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Abstract—To measure transient stability of power systems, 
estimation of its region of attraction (RoA) is one of the common 
approaches used in practice. Among the class of available methods 
of RoA estimation, Sum-of-Squares (SoS) optimization based 
method has been introduced recently, and is promising due to its 
ability to compute an estimate of the RoA in a less restrictive and 
scalable way. In this paper, we propose an enhanced version of SoS 
optimization based RoA estimation. Our result shows that the 
proposed algorithm can significantly improve the size of the 
estimated RoA (more than 300%), and reduce the overall 
computation time (more than 60%), as compared to the state-of-
the-art.   
 

Index Terms— Lyapunov function, power systems, region of 
attraction, Sum-of-Squares optimization, transient stability. 

I.  INTRODUCTION 
UANTIFICATION of transient stability of power systems,  
is a key to understand its resilience, and has become more 
important in recent times, as both complexity and 

vulnerability of power grid is increasing due to rapid growth of 
distributed generation. In this paper, we measure transient 
stability of a power system operating at a stable equilibrium 
point (SEP), by the volume of the corresponding RoA, namely 
the set of states from where the power system can return to the 
SEP, if perturbed. The problem of estimating RoA of power 
systems has been studied intensively over the last few decades, 
and can be broadly classified into two categories, ‘non-
Lyapunov’ and ‘Lyapunov’. Among the ‘non-Lyapunov’ 
methods, [1] rely on a well-defined analytical energy function. 
This however, does not exist for system with transfer 
conductance. Also it requires the estimation of a critical energy, 
the value of which is difficult to compute reliably. The closest 
unstable equilibrium point (UEP) method [2] is contingent upon 
identification of the set of all unstable equilibrium points 
located on the boundary of RoA, which may be intractable for 
complex systems, and the estimated RoA is conservative. The 
controlling UEP method, supported by a subsequent 
advancement called boundary of stability region based 
controlling UEP (BCU) method [3], also turns out to be 
unreliable in several cases [4], [5], as it assumes linearity of the 
fault-on trajectory of the power system. On the other hand, 
among the ‘Lyapunov’ methods [6], Zubov’s method solves a 
set of PDE to compute the RoA boundary. Even in this setting 
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transfer conductance poses a challenge, when applied to power 
systems. Popov’s stability criterion based method relies on 
satisfaction of sector conditions, where again the presence of 
transfer conductance presents impediment [7], [8]. [9] proposed 
a method of estimating RoA by propagation of boundary of a 
reachable set around the equilibrium, backward in time, by 
solving a HJI PDE using level set method, but the method relies 
on defining an analytical energy function that comes with the 
aforesaid limitation.  

Thus aforementioned methods of computing RoA invariably, 
have complexities scaling exponentially with the dimension of 
the state space. Among the recent ‘Lyapunov’ methods, SoS 
optimization based method solves a set of SoS maximizations 
to estimate RoA iteratively, in form of an optimal sublevel set 
of a Lyapunov function that need not be known a priori. Unlike 
the energy function based methods, such algorithmic 
construction of RoA does not require the system model to be 
free of transfer conductance. Also the complexity of computing 
RoA using SoS optimization, is polynomial with respect to the 
dimension of the state space. This approach was introduced to 
power systems in [10], and a more compact implementation, 
was recently presented in [11].  

In this paper, we propose an enhancement of the algorithm  
presented in [11], where we iteratively alternate over two SoS 
maximizations, which (i) enlarges the size of the estimated 
RoA, and (ii) reduces the overall computation time, both by 
significant amounts (as shown in TABLE II). We also introduce 
a superior stopping criterion, for estimating the RoA as an 
inscribing ellipsoid, which alleviates one of the assumptions in 
algorithm in [11]. The proposed algorithm is implemented on 
the modified WSCC-9 bus test system to validate the 
enhancements with respect to the state-of-the-art.   

II.  PRELIMINARIES 

A.  Model 
In dynamic analysis of a power system comprising of N  

generators, it is common to study the system with reduced  
1n N   number of generators, while setting the remaining 

one as the fixed inertial frame spinning at the synchronous 
speed. In this setting, we model the dynamics of the system by 
the classical swing equations, which for the thi generator, where

{1,..., },ni  can be written as:   
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                              ,ii i miGi iM D P P          (1) 
where i denotes the angle of the generator emf phasor i iE   
(behind its transient reactance), measured relative to the inertial 
frame, and ,iM ,iD  and MiP  are constants denoting inertia, 
damping and mechanical power input respectively, while GiP  is 
the electrical power output given by: 

1
cos( ),

N

Gi i j ij ij i j
j

P E E Y   


            (2) 

where for a pair of generators ( , ),i j  ij ijY   denotes the ( , )thi j
element of the Kron-reduced admittance matrix. iE  is kept 
constant at its value corresponding to the equilibrium point of 
(1) and (2) (also seen by setting 0i i   ), found by solving 
the power flow (PF) equations, and the value of MiP  is also held 
constant, at the value of GiP  at the equilibrium. 

B.  Notations 
 (resp., 


 and 


) denotes the space of reals (resp., 

non-negative reals and positive reals). n  denotes the real field 
of dimension .n  x  is the set of polynomials with coefficients 
over the field of reals defined over a vector valued 
indeterminate ,x  and ,0x x  is the subset of those 

polynomials that evaluate to zero at the origin. n
x  denotes n  

dimensional space of polynomials, where each element lies in 
.x  Our RoA computation relies on a certain class of 

polynomials, called Sum-of-squares (SoS) as defined below: 
Definition 1: For a non-negative integer d and 2 ,nx  a 
homogeneous polynomial ( )s x  of degree 2 ,d  is called Sum-
of-Squares polynomial, if and only if there exist polynomials 

1( ),..., ( ),rx u xu  each  of degree ,d  such that 2

1
(( ) .)i

i

r

s x u x


  

We let x x  to denote the set of all SoS polynomials in .x  

III.  PROBLEM FORMULATION 

A.  Background 
For a power system with dynamics defined by (1) and (2), 

the state vector consists of the generator angles and speeds, and 
is denoted as 21 21[ ... ] ,n

T
nx        and its nonlinear 

dynamics may be viewed as: 
( ( )),x f x t               (3) 

where 2 2: n nf   is a locally Lipschitz nonlinear map, 

typically defined over a domain 2 .ND R  2
0

Nx   is an 
equilibrium point if there is no rate of change at that state, i.e. 
if 0( ) 0.f x   
Definition 2 [12]: For an autonomous system defined by (3), the 
region of attraction (RoA) corresponding to its SEP 0 ,x  is the 
largest subset   of the domain ,D  such that if the system starts 
at any state in ,  it eventually reaches 0x  and remains stable. 

The true RoA   corresponding to a SEP 0x  is an open set, 

boundary of which is defined by the union of stable manifolds 
of the unstable equilibrium points around the SEP. If an 
autonomous system is initialized at a point outside  , then it 
never eventually enters  , and thus can never reach 0 .x  
Accordingly, if a stable power system is perturbed due to an 
occurrence of a fault (resp., any other transient disturbance), the 
operating point after clearance of the fault (resp., withdrawal of 
the cause of disturbance), must lie within the RoA 
corresponding to the post-clearance (resp., post-withdrawal) 
SEP,  for the post-clearance (resp., post-withdrawal) system to 
eventually reach the SEP. Hence transient stability margin of a 
power system, against the occurrence of a fault (resp., any other 
disturbance), can be measured by estimating the volume of the 
RoA corresponding to the SEP of the post-clearance (resp., 
post-withdrawal) system. It is common to characterize the RoA 
of (3) by a Lyapunov function as defined below: 
Definition 3 [12]: ( ),V x  a continuously differentiable real 
valued scalar function of state vector x D , is a Lyapunov 
function corresponding to a SEP 0x  of an autonomous system 
defined by (3), if the following conditions (4)-(7) are satisfied: 

0 ,( ) 0V x                   (4) 

0( ) 0 { },\V Dxx x            (5)  
,( ) 0V x x D                       (6)

0( ) 0,V x                   (7) 
and 0x  is called asymptotically stable if the following stronger 
version of (6) holds:   

0\{ }) .( 0V x x D x             (8) 
Using a Lyapunov function, the RoA can be characterized by: 

: { | (4),(5),(7),(8)}.RoA x D            (9) 
Next we state the theorem that is instrumental for all SoS 

optimization based RoA estimation approaches in practice: 
Theorem 1 (Positivstellensatz) [13]: Let the thi polynomial in a 
set of p  (resp., q ) polynomials in ,x  be denoted by ( )ig x  
(resp., ( )ih x ). Let i  be the thi subset of the set of all subsets 
of the integers {1,..., },n  excluding the null set. Then 

2{ }| ( ) 0 1 , ( ) 0 1n
i ig x i p h x i qx          defines a 

semi-algebraic set, which is empty if and only if there exist 
( ) 1 ,i xv x i p    and ( ) 0 2 1i

q
xs x i     

satisfying the following:  
2 1

0
1 1

( ) ( ) ( ) ( ) ( ) 1.
q

i

p

ji i i
i i j

v x h x s x g x s x


  

          (10) 

The complexity of certifying emptiness of the above semi-
algebraic set, by finding the polynomials ( )iv x  and ( )is x  that 
satisfy (10), is exponential with respect to the degree of 
polynomials ( )iv x  and ( ),is x  in general. However, a simple 
algebraic operation transforms (10) into a SoS constraint as 
follows:  

2 1

1 1
,( ) ( ) ( ) ( )

n

i

i i ji
i i j

m

xv x h x s x g x


  

            (11)  

which can be expressed as a set of linear matrix inequality 
(LMI) [14], by affine parameterization of polynomials ( )iv x  
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and ( )is x  [13]. By restricting the degree of the polynomials 

( )iv x  and ( ),is x  the above emptiness checking problem can 
be reduced into a semidefinite program (SDP) [14] that can be 
solved efficiently. [13] suggests a systematic hierarchy of 
polynomial sized SDP relaxations, to solve emptiness checking 
of the general class of semi-algebraic sets defined by finite set 
of constraints of the form (11). 

B.   Inner Approximation of the RoA 
Numerically computing RoA is in general of exponential 

complexity, in the dimension of the state space. Finding an 
inner approximation of the RoA can be formulated as the 
following optimization problem [11], where without loss of 
generality, its SEP can be taken to be the origin (otherwise one 
can simply employ a linear shift of coordinates): 

,0 ,

2

2

2 ,

m

|

a

subject to
{ | ( ) 0, 0}
{ ( ) , ( ) , ( ) }
{ | ( ) , ( ) 0, 0}

x
x c

n

n

n

V

x V x x
x p x V x c V x c
x V x c V x x









 

    

     

     

    (12) 

where ( )p x
 is a given positive semidefinite polynomial over 

x , such that it is positive everywhere except at the origin, and 
.   In (12), the first constraint corresponds to conditions 

(4)-(5), the third constraint corresponds to conditions (5)-(7), 
and the second constraint implies that the set ( ) }{ | p xx    is 
contained within the set .{ | ( ) }x V x c  Note that: 

( ) ( ),V VV x x f x
x x

 
 
 

       (13) 

which implies that the system dynamics is implicitly captured 
in the third constraint of (12).  

In the case of power systems, the set defined by the second 
constraint of (12) is not semi-algebraic, since ( )V x  is non-
polynomial (includes trigonometric functions). Hence Theorem 
1 cannot be directly applied to cast all the constraints in (12) as 
SoS constraints of the form (11). However, the following 
nonlinear transformation, as suggested in [10], [11], for all 

{1,..., },ni  “polynomializes” the dynamic equations (3): 

3 2

3 1

3

),

.

si

c
,

)

n(

1 os(

i i

i i

i i

z

z
z















 

          (14) 

After the transformation, the power system dynamics is: 
( ) ( ( )),z t f z t           (15) 
( ( )) 0,g z t             (16) 

where 3 ,nz  and  3 3 ,: n nf   3: n ng   are vectors 
of polynomial maps with elements satisfying the following for 

{1,..., }:ni  

3 2 3 3 1) ,( (1 )i i if z z z    

3 1 3 1) ,( ) ( /i mi Gi i i if z P P D z M        (17) 

3 3 2 3 1( ) ,i i if z z z   

and             
2 2
3 2 3 3 ,( ) 2i i i ig z z z z      (18) 

In the above equations, for all {1,..., },ni  GiP  is given by:  

3 2 3 3 2 3
1

3 3 3 2 3 2

( ( (1 ) (1 ))

((1 )(1 ) ),

Gi i j ij i j j i
j

ij i i

N

j j

P E E B z z z z

C z z z z

 



 

    

  

   (19) 

where ,sinij ij ijYB   and .cosij ij ijYC   Accordingly, (12) can 
be rephrased for the transformed space as follows: 

,0 ,

3

3

3 .

m

subject to
{ | ( ) 0, ( ) 0, 0}
{ | ( ) , ( ) , ( ) 0, ( ) }
{ | ( ) , ( ) 0, ( ,

a

) 0 0}

x
z

n

n

V c

n

z V z g z z
z p z V z c g z V z c
z V z c V z g z z









 

     

      

      

  (20) 

Now that all the constraints in (20) are semi-algebraic, Theorem 
1  can be applied (see the corollary to Theorem 1 in (11)) to 
obtain the following constrained version: 

,0 1 2 3 1 2 3, , , , , , ,s

subject to

max
N

z z zv v sv sV c


                 (21) 

1( ) ( ) ( ) ( )T
zV z v z g z q z               (22) 

1 2( )( ( )) ( ) ( ) ( ( ) )T
zz p z v z g z Vs z c           (23) 

2 3 3 ) ,( )( ( )) ( ) ( ) ( ( ) ( )T
zs z c V z s z V z v z g z q z         (24) 

where ( )q z
 is a polynomial with properties same as ( ).p x

 
Due to the presence of the product of polynomial variables in 
the first two terms of the last constraint, (21)-(24) is non-convex 
in general. An iterative algorithm to find a local optimal 
solution of (21) is provided in [11], with a proof of 
convergence, and the reader is referred to [11] for the steps in 
the algorithm in [11]. Next, we present our own version of the 
algorithm that enhances the one given in [11] by improving the 
inner approximation of the volume of RoA, and also reducing 
the computation time, significantly. We first provide our 
algorithm and next discuss the resulting enhancements.  
Our algorithm: 
(i)    Select ( ),p x

 ( ),q z
 scaling factor 0 1,   and small 

enough ,  ,  max   ( ).max   Set 0 0,c  0 0,   
1,u   1,v   1,w   .max   Select a polynomial ( ),r z

 with 
properties same as ( ).p x

 

(ii) ,0 1 2 3 2 :F uin hd , , , , s c  tha: , tz z z
nv v sV v          (25)

    1

2 3

( ) ( ) ( ) ( )

( )( ( )) ( ) ( .) ( ) ( )

T
z

T
z

V z v z g z q z

s z r z V z v z g z q z



 

  

     
        

(iii)    (a)  Repeat until ((26) is feasible or   ):  
  Set 1 ,u uc c    store 2 3( ), ( ), zs s zc   

  Find: 2 3 1 2 3 ,, , , ,z
n

zv v s ss                      (26) 
such that  (23)-(24) holds. 

  Set 1,u u         
(b) Set 1, ,max uc c    if  ,   retrieve 2 3( ), ( ), zs s zc   

(iv)    (a)  Repeat until ((27) is feasible or   ):   
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   Set 1 ,u u     store ), (V z  

  ,0 1 2 3 1Find : , , ,, ,N
z z zvV v sv             (27) 

such that  (22)-(24) holds. 
   Set 1,v v         

(b) Set 1, ,max u      if ,   retrieve ), (V z  

(v)  Compute w  volume of set 1{ | ( ) }vz p z    using (31). 

If 1w   and 1 ,w w   report ( ) .V z c  Otherwise, set
( ) ( ),p z V z    1, ,vc     1w w  and go to step (iii).    

 The two maximizations SoSP1 and SoSP4 of the algorithm 
in [11], can be seen as “exploitation” and “exploration” 
respectively. SoSP1 exploits a given Lyapunov candidate to 
enlarge the estimate of RoA, and converges to its largest 
sublevel set contained within the true RoA. SoSP4 explores the 
polynomial space for a better Lyapunov candidate, and 
eventually converges to the maximal candidate that inscribes 
the true RoA, while containing the region .{ )| ( }z p z    We 
replace SoSP1 and SoSP4 of the algorithm in [11] by the steps: 
(iii) and (iv) of our algorithm respectively, where we perform 
one step improvements of the respective objectives, instead of 
maximizing those. In light of the non-convexity of (21)-(24), 
the proposed modification enables a better balance between the 
exploitation and exploration, and results in a superior 
estimation of the RoA, and a faster convergence rate. The 
algorithm in [11] stops when the reduction in the value of the 
maximum coefficient of the polynomial ( ),p z

 between the 
consecutive iterations, is below certain threshold. Here [11] 
implicitly assumes that the maximum coefficient decreases 
monotonically in every iteration of the outer loop, while no such 
formal proof exists. We modify the stopping criterion, by 
setting the algorithm to stop when the increase in the volume of 
estimated RoA between the consecutive iterations, is below .
Since the volume is guaranteed to increase monotonically in 
every iteration [11], the modified stopping criterion relaxes the 
said implicit assumption of the algorithm in [11]. We exclude 
the proof of convergence, due to limited space. However, it is 
straightforward to extend the convergence proof provided in 
[11], to proof the convergence of our algorithm.   

C.  Computation of Volume of the Estimated RoA: 
If we restrict ( )V z  to be quadratic in (25) and (27), then the 

output of our algorithm ( ) ,V z c  defines an ellipsoid  in the 

space of 3 ,nz  expressed as follows: 
3{ | 2 },n T Tz z Az b z c          (28) 

where 3 3n nA   is symmetric positive semidefinite, 3 ,nb  
and both are obtained from the coefficients of the already 
computed terms of ( ).V z  We formulate the problem of 
computing the volume of ellipsoid defined by (28), by 
parametrizing the ellipsoid as the image of unit Euclidean ball 
under an affine transformation as follows: 

2
{ | 1},B d zz                  (29) 

where 3 3n nB   is symmetric positive semidefinite and 

3 .nd  Then the volume of ,  denoted by ,  is given by: 
,det( ) uB             (30) 

where u denotes volume of the unit Euclidean ball in 3 ,n  and 
det( )B  denotes the determinant of .B  The transformation of  
from (28) to (29), can be viewed as a special case of the 
computation of a maximal volume ellipsoid inscribed in the 
intersection of multiple ellipsoids, addressed in [14]. 
Accordingly, we can obtain (29) by solving the following 
convex problem with LMI constraint, where   is an 
auxiliary variable: 

1

,

1 1

1 1

,
m

.

log det( )

subject

)

in

to

0 ( )
0 0

B d

T T

B

c b A b d A b
B

d A b B A









 

 

    
 
 
  

     (31) 

While one can compute the exact volume of ,  using the 
existing closed form formula for ,u  it suffices to measure  
by det( )B  for comparison purpose, since u  is just a constant.  

IV.  RESULTS 
We implement the proposed algorithm for RoA estimation 

for the WSCC 3-generator 9-bus system, modified by assuming 
the generator models to be of second order with uniform 
damping, and the ratio /i iD M  for each generator is held at 0.1. 
The SEP is obtained by PF solution of the network, considering 
generator 1 as the slack generator. The Krone reduced variables 
obtained from the PF solutions, are shown in TABLE I. 

 Accordingly the system dynamic equation (prior to shifting 
the SEP to the origin) is given by the following, where 1  and 

2  denote the emf angles of generators 2 and 3 respectively, 
relative to that of generator 1, the assumed fixed inertial frame: 

1

2 1 1

2 2

1 2

1

2

32.42 93.05cos( )

81.55cos(1.354 ,

32.32 55.75cos( 1.357)

38.36cos(1.354 ) 0.1001 .

1.373

) 0.7828

 

  

 

  



 



  



   

 

     (32) 

Then we perform a linear transformation to bring the SEP of 
(32) to the origin, followed by the non-linear transformation 
(14), to obtain the constrained polynomial dynamic equations 
with SEP at the origin, in the transformed state space of 6.z  

Both the algorithms of RoA estimation are implemented in 
MATLAB, using SOSTOOLS 3.0 supported by SeDuMi 1.3, to 
solve (25)-(27), and CVX 2.1 for solving (31). For estimating 
the RoA using the algorithm in [11], we set the thresholds 

0.001,   0.01,p  and we kept the rest of the initializations 
similar to those suggested in [11], namely we set the degree of 

TABLE I.  Power Flow Solutions 
Generator ( i ) iE (p.u.) i (radians) miP (p.u) 

1 1.0566 0 0.7164 
2 1.0502 0.3048 1.63 
3 1.017 0.1896 0.85 
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polynomials 1 3 2, , ,V v v s  to 2 and that of 2 1 3, ,v s s  to 0, 
3( ) 10 ,Tq z zz

   ( ) ,Tr z z z   3,  and ( )p z
 is initialized 

to 0 ( )p z   1 21.5Tz z z z  5 60.5 .z z  For our algorithm, we kept 
the initializations of ( ),p z

 ( ),q z
 ( ),r z

 the degree of 
polynomial variables, and   identical to those used in the 
algorithm in [11], while the values used for the other parameters 
are: 1,max   0.5,   and 0.01.  

 After shifting the SEP to the origin by linear transformation, 
the RoA of (32), as estimated by the two algorithms, is shown 
in Fig. 1. It shows that our algorithm reports a less conservative 
estimate of the RoA, as compared to the algorithm in [11]. 
TABLE II shows the performance comparative of the two 
algorithms, which quantifies the enhancement offered by our 
algorithm, while Fig. 2 depicts their convergence curves. 

V.  CONCLUSION 
We proposed an enhancement in the existing sum-of-squares 

optimization based inscribed ellipsoidal approximation to the 
region of attraction estimation method for power systems. We 

introduce a novel convex optimization based stopping criteria, 
which is concrete with respect to the objective of the algorithm, 
unlike the one in the state-of-the-art. We also suggest iterative 
alternation over two SoS maximizations, which results in: (i) 
reduction of overall computation time by approximately 66%, 
and (ii) estimates RoA of volume approximately 3 times to that 
estimated by the state-of-the-art. 
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Figure 2. Iterative convergence of our algorithm and that in [11], where n̂  
denotes the total number of SoS optimizations solved by the respective 
algorithms (e.g. u v  for our algorithm), approximately reflecting their overall 
computation time, and  denotes the estimated volume of the RoA in the 
space of 6 ,z  computed using (30) setting 1.u     

 
(a)                                             (b) 

 
                                   (c)                                                 (d) 

 
                                    (e)                                                 (f) 
Figure 1. RoA estimated by our algorithm and that in [11]. Since the system 
dynamics is defined in the four dimensional space of 1 1 2 2, , , ],[x      the 
estimated RoA is visualized by its projections (a)-(f) on the six respective 
subspaces of the six possible pairs of the state variables. 

 

TABLE II.  Performance Comparative 
 Algorithm in [11] Our algorithm %Enhanced 

Computation 
Time 32.71 mins 10.83 mins 66.92% 

Volume of RoA 
estimated, in the 
space of 6z   

11.24 46.42 313% 

 


