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1. Introduction

The course takes us through a couple of cardinal methods (e.g. K-means, hierarchical clustering) of
unsupervised learning of a given data set. Such methods offer ways to visualize an unlabelled data set by
segregating the data samples into user-defined number of clusters, based on their underlying properties, that
are not intuitive otherwise. The limitation of the said methods has also been emphasized in the course
lectures. The K-means method segregates the data into a defined number of clusters and also returns
their respective centroids. However, if we want to add a set of fresh data samples into the learned model,
membership of the fresh data is decided based on their respective nearest centroid only, irrespective of the
distribution the population of the already formed clusters. Unlike K-means, hierarchical clustering method
partitions the data set hierarchically depending upon the user-defined linkage of the data points/sets. In this
method, the shape of the formed clusters is primarily governed by the definition of linkage, which equips this
method with a degree of freedom for course control of the shape of the clusters. In both the methods, the
resulting clusters and their members also depend upon the distance function. Although the said methods
are popular, they cannot be directly applied in cases where the data samples are drawn from a (or a group
of) specific distribution(s) and are periodically added into the model, since none of the methods models the
underlying distribution of the data samples. The objective of this project is to review existing literature to
understand and implement Gaussian mixture model based clustering method, which supposedly addresses
the aforementioned shortcomings of K-means and hierarchical clustering methods, where the data set is
drawn from a Gaussian mixture model.

2. Background (Gaussian Mixture Model)

Consider G numbers of p dimensional Gaussian distributions (hereinafter referred as component dis-
tributions), where the mean and covariance of the gth distribution is denoted by µg and Σg respectively.
Assume that n data samples are collected, by drawing one sample from a distribution at a time, where the
probability of drawing from the gth distribution in every turn, is given by a discrete probability density
πg (πg > 0,

∑G
g=1 πg = 1). The collected set of data forms a data matrix X (X ∈ Rn×p). Such model of

random sample generator is termed as Gaussian Mixture Model (GMM), where the model parameters
are denoted by ϑ = (π1, π2, ..πG, µ1, µ2, ..µG, Σ1, Σ2, ..ΣG). For all sampled data x ⊂ X, its density can
be written as

f(x|ϑ) =

G∑
g=1

πgϕ(x|µg,Σg)

1



where

ϕ(x|µg,Σg) =
1√

(2π)p|Σg|
exp{1

2
(x− µg)′Σ−1

g (x− µg)}

3. Problem formulation

A two dimensional (p = 2 ) synthetic data set, containing 300 samples (n = 300 ) drawn from a GMM of
three distributions (G = 3 ), defined by the model parameters as in Table 1, has been used for this project. A
scatter diagram of the synthetic data is shown in Figure 1. Since the samples are drawn randomly from the
distribution, we do not have a priori knowledge of the distribution from where the respective data samples are
sourced. The problem here is to cluster the data set such that the clusters depict a best possible segregation
of the data according to their membership in the original component distributions. The generation and
analysis of the synthetic data as explained hereinafter, are performed in MATLAB.

Table 1 : GMM parameters
DistributionNo.(g) Mean(µg) Covariance(Σg) MixingProportion(πg)

1 [5, 1] [0.8 0.75; 0.75 0.8] 0.4

2 [6, 2] [1 -0.75; -0.75 1] 0.3

3 [3, -4] [1 -0.55; -0.55 1] 0.3

Figure 1: The synthetic data Figure 2: Data analysis by conventional approaches

First, K-means and hierarchical clustering methods are applied on the synthetic data set. The data
set has been analyzed using various types of distance functions, while implementing K-means algorithm.
Trials with different linkages (e.g. average, complete, ward and centroid) has also been performed, in case
of hierarchical clustering. Finally, the data set has been fitted into a Gaussian Mixture Model (GMM), by
learning the mean, variances and the membership probabilities of the original GMM, from where the data
samples are drawn. Subsequently, 1500 fresh data samples are randomly drawn from the original GMM
population, and are fitted in the learned models to observe how the clusters, formed using the different
methods, grow in addition of fresh data. The total population of the initially observed data for clustering
and the freshly drawn data is shown in Figure 2.
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4. Clustering by conventional approaches

4.1. K-Means

For implementing K-Means algorithm MATLAB built-in function has been used, with K-Means ++
initialization method. Among the various distance functions, Euclidean (L-2), Manhattan (L-1) and Cosine
Similarities are tried and it is observed that L-2 norm generates the most meaningful clustering. K-Means
with Cosine Similarities fails to generate a relevant result in this case, since its capability of clustering data
is limited to the cases where the actual clusters are oriented radially. The result obtained by K-Means with
L-1 norm, is close to what has been obtained using L-2 norm, barring few spurious mixing of clusters. The
obtained clusters, using L1 and L2 distance functions are depicted in Figure 3,4.

Figure 3: K-Means clustering of initial data using L2 norm Figure 4: K-Means clustering of initial data using L1 norm

After clustering of the initial data using K-Means, the fresh data are also clustered according to their
shortest distance from the already obtained cluster centers. It is observed that the growth of the clusters,
on addition of fresh data, is forming a Voronoi partition around the cluster centers, in case of L2 distance
function, while that for L1 distance is similar but with spurious mixing of clusters. The clustered complete
data population by K-Means with L1 and L2 norm are captured in Figure 5, 6.

4.2. Hierarchical clustering

Hierarchical clustering is performed on the union of initial and fresh data samples, using different linkages
e.g. ward, complete, average and single. Out of the said four trials, only ward and complete linkages generated
somewhat meaningful result, while both single and average linkages, pulling almost the complete data set
into a single cluster greedily. The clusters obtained using ward and complete are depicted in Figure 7, 8.

5. GMM based clustering

In contrast to the previously discussed conventional methods, GMM based clustering is performed, es-
timating the GMM parameters of the source distributions by analyzing the observed data samples. First
we define a set of membership vectors z1, z2, ..., zn corresponding to the respective initially observed data
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Figure 5: K-Means clustering of complete data using L2 norm Figure 6: K-Means clustering of complete data using L1 norm

Figure 7: Hierarchical clustering of complete data using ward
linkage

Figure 8: Hierarchical clustering of complete data using com-
plete linkage
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samples x1, x2, ..., xn, where every membership vector zi = (zi1, zi2, ..., ziG) has G elements with the element
zig indicating the gth component membership of the ith sample. Since source of every data sample is one of
the distinct distributions, ideally zig = 0 for all g except g = k, for which zik = 1, indicating that the ith

sample has been drawn from the kth component distribution. With such configuration, the complete data
likelihood can be written as

Lc(ϑ) =

n∏
i=1

G∏
g=1

[πgϕ(xi|µg,Σg)]zig

Taking natural logarithm of the above likelihood gives the complete data log likelihood

lc(ϑ) =

n∑
i=1

G∑
g=1

zig[log πg + logϕ(xi|µg,Σg)]

The problem of estimating the GMM parameters can now be formally defined as finding the combination
of model parameters and component membership vectors, such that the expected value of the complete data
log likelihood is maximized. The expected value of the log likelihood function can be written as

Q(ϑ) =

n∑
i=1

G∑
g=1

ẑig[log πg −
p

2
log 2π − 1

2
log |Σg| −

1

2
Tr(xi − µg)(xi − µg)′Σ−1

g ]

equivalently,

Q(ϑ) =

G∑
g=1

ng log πg −
np

2
log 2π −

G∑
g=1

ng
2

Tr(SgΣ
−1
g )

where ng =
∑n
i=1 ẑig, Sg = 1

ng

∑n
i=1 ẑig(xi − µg)(xi − µg)′, ẑig =

π̂gϕ(xi|µ̂g,Σ̂g)∑G
h=1 π̂hf(xi|µ̂g,Σ̂g)

and µ̂g, π̂g and Σ̂g

are the global maximizer of the expected log likelihood for a given zig.

It can be noted that the expected log-likelihood is a concave function, for a given value of zig and hence one
can find a global maximizer of the expected log-likelihood function for a known zig. However, the elements
of zig are random and therefore there is no direct approach to find a global maximum of the expected log-
likelihood. Instead we embrace a well known iterative algorithm called expectation maximization (EM)
algorithm to solve the problem. The EM algorithm is sequenced as following:

initialize ẑig
while convergence criterion not met

update π̂g =
ng

n
update µ̂g = 1

ng

∑n
i=1 ẑigxi

update Σ̂g = 1
ng

∑n
i=1 ẑig(xi − µ̂g)(xi − µ̂g)′

update ẑig
chck convergence criterion

end while
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The update rules of the above algorithm are found by analytically finding the global maximizers of
expected value of the log-likelihood, for a given zig. MATLAB built-in function for fitting GMM, which
implements EM algorithm, has been used for analyzing the initial observed data in this case. The model
parameters estimated by this algorithm are shown in Table 2 below. Comparing the estimated parameter
values with the actual values of Table 1, it is understood that the algorithm indeed generates a superla-
tively close estimation of the actual model parameters. The component distribution contours based on the
estimated parameters, superimposed on the initial observed data is captured in Figure 9, to visualize the
orientation of the components with respect to the actual distribution of the data samples.

Table 2 : GMM estimated parameters
DistributionNo.(g) Mean(µg) Covariance(Σg) MixingProportion(πg)

1 [4.94 0.9] [0.93 0.81; 0.81 0.79] 0.46

2 [6.07 1.98] [1.2 -0.93; -0.93 1.3] 0.27

3 [3.89 -2.1] [0.9 -0.54; -0.54 1.07] 0.27

The final step of EM algorithm provides the estimated values of all zi vectors, where the set (z1k, z2k, ..., znk)
depicts the a posteriori membership of all data samples for kth component distribution, given the finally
estimated model parameters ϑ. Such a posteriori membership values can be exploited to visualize soft
cluster of the data set with respect to a given estimated component distribution. The soft clustering of the
synthetic data set with respect to Component 1 is given in Figure 10.

Figure 9: Estimated GMM Contour Figure 10: GMM soft clustering with respect to Cluster 1

The cluster, for which a posteriori membership of a particular sample is maximum, can be labelled as the
cluster of that sample. Similarly all the samples can be allocated to one of the estimated component clusters
to visualize a hard clusters of the data set. Such hard clustering of the synthetic data, obtained according to
the maximum a posteriori membership, is captured in Figure 11. Now that the initially observed synthetic
data is clustered based on the learned GMM parameters, we can also determine the expected membership of
the fresh data samples by estimating their a posteriori membership, given the estimated model parameters.
The clustering of the complete data set, based on this method, has been provided in Figure 12.

6



Figure 11: Hard clustering based on estimated GMM
Figure 12: Hard clustering of the complete data set using esti-
mated GMM

6. Challenges in implimentation

Although GMM based clustering method turns out to be an extremely powerful method in unsupervised
learning, the implementation of the method is not straight forward. Time and again, challenges faced in
implementation of this method, have been highlighted in literature and various solutions are also proposed.
Few of such key challenges are enumerated below:

6.1. Parameter Initialization

GMM based clustering is highly sensitive to initialization of parameters, owing to the singularity riddled
surface of the likelihood function, making the estimated parameters unreliable. Zhou et al. [1] proposes a
deterministic annealing algorithm that alleviates this concern, by making the likelihood surface flatter.
An auxiliary variable m (m ∈ (0,1)) is introduced, drawing from an increasing sequence of user-specified
values. The number of deterministic iterations to be performed before commencement of EM algorithm,
depends upon the length of this sequence. Deterministic annealing iteration is similar to EM algorithm
except that estimation step is performed by the following

ẑ∗ig =
π̂gϕ(xi|µ̂g, Σ̂g)

m∑G
h=1 π̂hf(xi|µ̂g, Σ̂g)

m

where π̂h, µ̂g and Σ̂g are chosen arbitrarily in the first iteration.

6.2. Stopping criterion

One of the popular stopping criteria of EM algorithm is lack of progress of the log-likelihood, mathemat-
ically expressed by lk+1 − lk < ε (ε ≥ 0). While this approach works for clustering problem with smooth
increment of log-likelihood (refer Figure 13), it causes premature stopping of the algorithm if log-likelihood
increment is not enough smooth (refer Figure 14). In such cases, McNicholas et al.[2, 3] considers convergence
criterion based on Aitken’s acceleration, given by
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lk+1
∞ − lk =

lk+1 − lk

1− ak
< ε

where

ak =
lk+1 − lk

lk − lk−1

is an acceleration parameter, used to obtain lk+1
∞ , the asymptotic log-likelihood value estimated at (k+1)th

iteration.

Figure 13: Smoothly evolving log-likelihood Figure 14: Roughly evolving log-likelihood

6.3. Limited scalability

For a p dimensional GMM with G component distributions, the number of model parameters is given
by G − 1 + Gp + Gpp+1

2 where there are G − 1 numbers of mixing proportions, Gp numbers of parameters

related to the means and the rest Gpp+1
2 numbers of parameters are attributed to the covariance matrices.

It can be noted that the number of covariance related parameters grows exponentially with dimension of the
data, which can make the algorithm computationally unfeasible while clustering very high-dimensional data.
In such applications, wherever pertinent, one way to harness computational complexity is by constraining
the structure of the covariance matrix while performing the maximization step of EM algorithm. The
constraints can be of various types e.g. Σg = λgIp, Σg =p or Σg = Σ. This technique is termed as Gaussian
Parsimonious Clustering Method (GPCM) [4].

6.4. Model Selection

Often it is found that the exact number of component distributions of GMM corresponding to a data set
in hand, is not a priori known. Even in some cases, where the number of components is known, there is a
possibility that the samples are contaminated with Gaussian noise(s) with mean and variance both reasonably
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high, causing existence of outliers in the data set. If the samples are high dimensional, unavailability of a
priori knowledge of structure of the covariance matrix, may cause GPCM to generate unreliable result. To
overcome such issues, it is customary to fit each GMM, with different structures of covariance matrices and
various number of components, using EM algorithm. The best of these family of models is selected using
some criterion and the associated clusters are reported. The most popular criterion for this purpose is the
Bayesian information criterion (BIC) given by BIC = 2l(ϑ̂)− ρ log n. Application of model selection using
BIC is found in literature ([7]by Andrews et al. [6] by Vrbik et al.) over the last decade. Despite its
popularity, BIC based model selection doesn’t always generate reliable result and the method, being a brute
force technique, comes with painfully complex computational burden at times.

7. Conclusion

As depicted by comparative study of Figure 5, 6, 8 and 12, it is obvious that performance of GMM based
clustering is much superior as compared to conventional K-Means and Hierarchical clustering algorithms,
when the samples come from a GMM population. The success of GMM based technique, in this case, is at-
tributed to the efficient technique of learning the source model parameters. Despite several implementational
challenges, GMM based learning technique finds a broad spectrum of application areas like bio-informatics
[3], matrix completion [5], facial recognition, just to name a few. A key strength of GMM based clustering
is, off course, its ability to offer a visualization of soft clusters, depicting the likelihood of each point to be a
member of a cluster, which is not possible using K-Means and Hierarchical clustering.

The implementational issues of GMM based clustering opens up a wide area of research. Cognizing
limitation of BIC based model selection, research efforts are observed for finding more meaningful alterna-
tive of BIC (Integrated completed likelihood (ICL) by Biernacki et al.). Recent research also shows efforts
towards overcoming computational complexities of model selection and finding optimal estimation of GMM
parameters ([8] Yihong Wu et al.).
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     Annexure 

MATLAB code for the project: 

clear all 
nos = 100; 
test_nos = 500; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                   Generate Observed Data and Fresh Data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mu1 = [5 1]; 
sigma1 = [0.8 .75; .75 0.8]; 
mu2 = [6 2]; 
sigma2 = [1 -0.75; -0.75 1]; 
mu3 = [4 -2]; 
sigma3 = [1 -.55; -.55 1]; 
Mu = [mu1; mu2; mu3];  
Sigma = cat(3,sigma1,sigma2,sigma3);  

  
p = [0.4 0.3 0.3]; % Mixing proportions 

  
gmTrue = gmdistribution(Mu,Sigma,p); 
R = random(gmTrue,3*nos); 
R_test = random(gmTrue,3*test_nos); 
R_total = [R;R_test]; 

  
figure 
plot(R(:,1),R(:,2),'bo'); 
hold on 
s = scatter(Mu(:,1),Mu(:,2)) 
s.MarkerFaceColor = [0 0.9 0.9]; 
legend('Observed Data','Means') 
title('"Observed" data'); 

  
figure 
plot(R_test(:,1),R_test(:,2),'mo') 
hold on 
plot(R(:,1),R(:,2),'bo'); 
s = scatter(Mu(:,1),Mu(:,2)) 
s.MarkerFaceColor = [0 0.9 0.9]; 
legend('Observed Data','Fresh Data','Means','Location','best'); 
title('"Observed + Fresh" data'); 
hold off 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                   K Means by Euclidean Norm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[idx,C] = kmeans(R,3); 

  
figure 
hold on 

  
for i =1:nos*3 
    if idx(i) == 1 



        plot(R(i,1),R(i,2),'ro') 
    elseif idx(i) == 2 
        plot(R(i,1),R(i,2),'go') 
    else 
        plot(R(i,1),R(i,2),'co') 
    end 
end 

  
scatter(C(:,1),C(:,2),50,'filled') 
title('K Means Clustering (L2) - Observed Data') 

  
hold off 

  
figure 
hold on 
for i =1:nos*3 
    if idx(i) == 1 
        plot(R(i,1),R(i,2),'ro') 
    elseif idx(i) == 2 
        plot(R(i,1),R(i,2),'go') 
    else 
        plot(R(i,1),R(i,2),'co') 
    end 
end 
for i = 1:length(R_test(:,1)) 
    d = repmat(R_test(i,:),[3,1]); 
    k = d - C; 
    k_norm = vecnorm(k'); 
    idx_f = find(k_norm == min(k_norm)); 
    if idx_f == 1 
        plot(R_test(i,1),R_test(i,2),'ro') 
    elseif idx_f == 2 
        plot(R_test(i,1),R_test(i,2),'go') 
    else 
        plot(R_test(i,1),R_test(i,2),'co') 
    end 
end 

  
scatter(C(:,1),C(:,2),50,'filled') 
title('K Means Clustering (L-2) of Fresh + Observed Data') 

  
hold off 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       K Means by Manhattan Norm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[idx,C] = kmeans(R,3,'Distance','cityblock'); 
% scatter(C(:,1),C(:,2),50,'filled') 
figure 
hold on 

  
for i =1:nos*3 
    if idx(i) == 1 
        plot(R(i,1),R(i,2),'ro') 
    elseif idx(i) == 2 



        plot(R(i,1),R(i,2),'co') 
    else 
        plot(R(i,1),R(i,2),'go') 
    end 
end 

  
scatter(C(:,1),C(:,2),50,'filled') 
title('K Means Clustering (L-1) - Observed Data') 

  
hold off 

  
figure 

  
hold on 
for i =1:nos*3 
    if idx(i) == 1 
        plot(R(i,1),R(i,2),'ro') 
    elseif idx(i) == 2 
        plot(R(i,1),R(i,2),'co') 
    else 
        plot(R(i,1),R(i,2),'go') 
    end 
end 
for i = 1:length(R_test(:,1)) 
    d = repmat(R_test(i,:),[3,1]); 
    k = d - C; 
    k_norm = vecnorm(k',1); 
    idx_f = find(k_norm == min(k_norm)); 
    if idx_f == 1 
        plot(R_test(i,1),R_test(i,2),'ro') 
    elseif idx_f == 2 
        plot(R_test(i,1),R_test(i,2),'go') 
    else 
        plot(R_test(i,1),R_test(i,2),'co') 
    end 
end 

  
scatter(C(:,1),C(:,2),50,'filled') 
title('K Means Clustering (L-1) of Observed and Fresh Data') 
hold off 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                   K Means by Cosine Similarity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
[idx,C] = kmeans(R,3,'Distance','cosine'); 
% scatter(C(:,1),C(:,2),50,'filled') 
figure 
hold on 
for i =1:nos*3 
    if idx(i) == 1 
        plot(R(i,1),R(i,2),'ro') 
    elseif idx(i) == 2 
        plot(R(i,1),R(i,2),'co') 
    else 



        plot(R(i,1),R(i,2),'go') 
    end 
end 

  
scatter(C(:,1),C(:,2),50,'filled') 
title('K Means Clustering (Cosine) - Observed Data') 

  
hold off 

  
figure 

  
hold on 
for i =1:nos*3 
    if idx(i) == 1 
        plot(R(i,1),R(i,2),'ro') 
    elseif idx(i) == 2 
        plot(R(i,1),R(i,2),'co') 
    else 
        plot(R(i,1),R(i,2),'go') 
    end 
end 
for i = 1:length(R_test(:,1)) 
    d = repmat(R_test(i,:),[3,1]); 
    k = d - C; 
    k_norm = d.*C; 
    idx_f = find(k_norm == min(k_norm)); 
    if idx_f == 1 
        plot(R_test(i,1),R_test(i,2),'ro') 
    elseif idx_f == 2 
        plot(R_test(i,1),R_test(i,2),'go') 
    else 
        plot(R_test(i,1),R_test(i,2),'co') 
    end 
end 

  
scatter(C(:,1),C(:,2),50,'filled') 
title('K Means Clustering (Cosine) - Fresh and Observed data') 

  
hold off 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               Hierarchical Clustering by 'Ward' Linkage 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Z = linkage(R_total,'ward'); 
T = cluster(Z,'maxclust',3); 
figure 
hold on 
for i = 1:length(R_total(:,1)) 
    if T(i) == 1 
        plot(R_total(i,1),R_total(i,2),'ro') 
    elseif T(i) == 2 
        plot(R_total(i,1),R_total(i,2),'gx') 
    else 
        plot(R_total(i,1),R_total(i,2),'c+') 
    end 
end 
title('Hierarchical Clustering by "Ward" Linkage') 



hold off 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               Hierarchical Clustering by 'Single' Linkage 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Z = linkage(R_total,'single'); 
T = cluster(Z,'maxclust',3); 
figure 
hold on 
for i = 1:length(R_total(:,1)) 
    if T(i) == 1 
        plot(R_total(i,1),R_total(i,2),'ro') 
    elseif T(i) == 2 
        plot(R_total(i,1),R_total(i,2),'go') 
    else 
        plot(R_total(i,1),R_total(i,2),'co') 
    end 
end 
title('Hierarchical Clustering by "Single" Linkage') 
hold off 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               Hierarchical Clustering by 'Complete' Linkage 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Z = linkage(R_total,'complete'); 
T = cluster(Z,'maxclust',3); 
figure 
hold on 
for i = 1:length(R_total(:,1)) 
    if T(i) == 1 
        plot(R_total(i,1),R_total(i,2),'ro') 
    elseif T(i) == 2 
        plot(R_total(i,1),R_total(i,2),'go') 
    else 
        plot(R_total(i,1),R_total(i,2),'co') 
    end 
end 
title('Hierarchical Clustering by "Complete" Linkage') 
hold off 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               Hierarchical Clustering by 'Average' Linkage 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Z = linkage(R_total,'average'); 
T = cluster(Z,'maxclust',3); 
figure 
hold on 
for i = 1:length(R_total(:,1)) 
    if T(i) == 1 
        plot(R_total(i,1),R_total(i,2),'ro') 
    elseif T(i) == 2 
        plot(R_total(i,1),R_total(i,2),'go') 
    else 
        plot(R_total(i,1),R_total(i,2),'co') 
    end 
end 
title('Hierarchical Clustering by "Average" Linkage') 
hold off 



  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                         Gaussian Mixture Model 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
options = statset('Display','final');  
gm = fitgmdist(R,3,'Options',options) 

  
figure 
plot(R(:,1),R(:,2),'bo') 
hold on 
ezcontour(@(x,y)pdf(gm,[x y]),[min(R_total(:,1)) 

max(R_total(:,1))],[min(R_total(:,2)) max(R_total(:,2))]) 
title('Fitted GMM Contour on Observed Data') 
hold off 

  
%%%%%%%%%%%%%%%%%%%%%%%%      Hard Clustering       %%%%%%%%%%%%%%%%%%%%%%% 

  
idx = cluster(gm,R); 
cluster1 = find(idx == 1); % |1| for cluster 1 membership 
cluster2 = find(idx == 2); % |2| for cluster 2 membership 
cluster3 = find(idx == 3); % |3| for cluster 3 membership 

  
figure 
scatter(R(cluster1,1),R(cluster1,2),'ro'); 
hold on 
scatter(R(cluster2,1),R(cluster2,2),'co'); 
scatter(R(cluster3,1),R(cluster3,2),'go'); 
scatter(Mu(:,1),Mu(:,2),50,'filled') 
legend('Cluster 1','Cluster 2','Cluster 3','Means of Training 

Data','Location','best') 
title('Clustering of Observed Data using Gaussian Mixture Model') 
hold off 

  
[idx_test,~,P_test] = cluster(gm,R_test); 
cluster1 = find(idx_test == 1); % |1| for cluster 1 membership 
cluster2 = find(idx_test == 2); % |2| for cluster 2 membership 
cluster3 = find(idx_test == 3); % |3| for cluster 3 membership 
figure 
ezcontour(@(x,y)pdf(gm,[x y]),[min(R_total(:,1)) 

max(R_total(:,1))],[min(R_total(:,2)) max(R_total(:,2))]) 
hold on 
scatter(R_test(cluster1,1),R_test(cluster1,2),'ro'); 
scatter(R_test(cluster2,1),R_test(cluster2,2),'co'); 
scatter(R_test(cluster3,1),R_test(cluster3,2),'go'); 
title('Fresh Data (Hard) Cluster Assignments') 
scatter(Mu(:,1),Mu(:,2),50,'filled') 
legend('Fitted GMM Contour','Cluster 1','Cluster 2','Cluster 3','Means of 

Training Data','Location','best') 
hold off 

  
c1 = (idx == 1); % |1| for cluster 1 membership 
c2 = (idx == 2); % |2| for cluster 2 membership 
c3 = (idx == 3); % |3| for cluster 3 membership 
P = posterior(gm,R);  



figure 
scatter(R(c1,1),R(c1,2),10,P(c1,1),'o') 
hold on 
scatter(R(c2,1),R(c2,2),10,P(c2,1),'o') 
scatter(R(c3,1),R(c3,2),10,P(c3,1),'o') 
hold off 
clrmap = jet(80); 
colormap(clrmap(9:72,:)) 
ylabel(colorbar,'Component 1 Posterior Probability') 
title('Scatter Plot and Cluster 1 Posterior Probabilities') 

  
%%%%%%%%%%%%%%%%%%%%%%%%      Soft Clustering       %%%%%%%%%%%%%%%%%%%%%%% 

  
threshold = [0.4 0.6]; 
idx_2 = find(P(:,1)>=threshold(1) & P(:,1)<=threshold(2));  
numInBoth = numel(idx_2); 
figure 
scatter(R_test(cluster1,1),R_test(cluster1,2),'ro'); 
hold on  
scatter(R_test(cluster2,1),R_test(cluster2,2),'co'); 
scatter(R_test(cluster3,1),R_test(cluster3,2),'go'); 
scatter(Mu(:,1),Mu(:,2),50,'filled'); 
plot(R_test(idx_2,1),R_test(idx_2,2),'ko','MarkerSize',10); 
title('Fresh Data (Soft) Cluster Assignments'); 
legend('Cluster 1','Cluster 2','Cluster 3','Means of Training Data','Data 

hard to distinguish between two clusters','Location','best'); 
hold off 


