
1

A Physical State based DQN Agent for
Autonomous Vehicles
Soumyabrata Talukder, Ramij Raja Hossain

Abstract—In lieu of the current trend of computer vision
based decision inference, agents of autonomous vehicles may
alternatively be designed for physical state-based control syn-
thesis. In this work, we train a Deep Q Network (DQN) to
estimate Q values corresponding to the physical state and
action of the autonomous vehicle, which facilitates selection of
optimal control decision at every physical state. We assume
constrained continuous state space with a discrete set of
actions, and implement our idea on the bicycle model of a
commercialized miniaturized autonomous vehicle. Results are
reported for multiple trials with different agent architectures
and training parameters.

Index Terms—DQN, Reinforcement Learning, Autonomous
Vehicle, Landshark, Continuous state space.

I. INTRODUCTION

AUTOMOBILE is an ubiquitous necessity of human
life, and bringing autonomy in automobile was con-

ceptualized primarily to enhance transportation efficiency
and safety, and also to improve human experience. Since
its inception, autonomous vehicle had been an active area
of research, proliferation and success of which are evident
through its recent commercialization, and the optimistic
targets of launching autonomous vehicles set by a number
of industry leaders.

While the state-of-the-art of autonomous vehicles, invari-
ably embrace computer vision based decision making [1]–
[4], it is intriguing to explore how good the physical states
of the vehicle are, to make control decisions. The camera
inputs are quintessential for a general on-road application,
in order to ensure safety and compliance of traffic rules,
but alternatively the aforementioned physical state based
control could act as a reference path plan that is further duly
corrected by the real-time image-based inference. On the
other hand, there are miniaturized autonomous vehicles (e.g.
Landshark launched by Black-I Robotics) that are designed
to perform transportation of objects between designated
points in a fixed environment (akin to robotic application),
where physical state based control decision making can
eliminate the current need of installing a set of sensory
cameras, thus reducing the manufacturing cost.

Various classical approaches (e.g. linear/nonlinear model
predictive control (MPC), feedback linearization, control
Lyapunov design) exist in literature that deals with the
problem of optimal path planning for autonomous vehicles.
[5] provides a brief survey of these approaches. The classical
techniques offer provable properties of the controller, but

This paper is submitted in May’19, as a requirement of the final term
project of the course ME 592x offered at Iowa State University

S. Talukder and R. R. Hossain are affiliated with the Department of
Electrical and Computer Engineering, Iowa State University, Ames, IA
50010, USA (e-mail: talukder@iastate.edu, rhossain@iastate.edu).

generally at the cost of numerous assumptions that are
hard to verify in real time practical applications. Rein-
forcement Learning (RL), in contrast, arguably provides the
most general framework that offers a near optimal solution.
RL also benefits from the fact that it doesn’t rely on an
accurate model for control synthesis, rather it learns from the
experiences (also termed as reward) with the environment.

Motivated by this, we try to solve the problem of optimal
control synthesis for the autonomous vehicle by adopting
Deep Q Learning, the RL approach proposed in [6], which
is amenable to perform well for the problem categories with
continuous state space, and finite discrete action space.

The rest of the paper is organized as follows. Section II
describes the dynamic model of the autonomous vehicle,
and defines the environment and its constraints. Section III
defines few notations that will be used throughout the rest
of the paper. Section IV describes the architecture of the
agent, and the implementation setting. Section VI describes
the results, and finally section VII concludes the paper.

II. MODEL DESCRIPTION

A. Autonomous Vehicle Dynamics

We consider the bicycle model [7] of an autonomous
vehicle with 5 degrees of freedom (a.k.a. states), where v, ω,
and θ denote the three states: forward velocity, yaw rate and
angular position respectively, and the pair of the rest two
states x and y denotes the position of the vehicle on cartesian
coordinate. The model parameters are: m,J,B,Br, Bs, Bl,
and Sl denoting the point mass, moment of inertia, width
(wheel to wheel), mechanical resistance to rolling forward,
mechanical resistance to sliding forward, mechanical resis-
tance to turning and lateral friction of the track respectively.
The input to the vehicle are Fl and Fr denoting the forward
effective force acting on the left and right wheel assembly
respectively. Fig. 1 shows a schematic diagram of the vehicle
model for the sake of clarity.

Fig. 1: Schematic diagram of the vehicle model

2

In this setting, the dynamics of the vehicle can be
represented by the following switched nonlinear dynamic
equations:

turning :=

{
True, B

2 |Fl − Fr| ≥ Sl

False, Otherwise
(1)

v̇ =


1
m{Fl + Fr − (Br +Bs)v}, turning = True

1
m (Fl + Fr −Brv), turning = False

(2)

ω̇ =


1
J {

B
2 (Fl − Fr)−Blω}, turning = True

0, turning = False
(3)

θ̇ = ω (4)

ẋ = v sin θ (5)

ẏ = v cos θ (6)

We assume that the states of the vehicle are fully observed,
and are available to the agent for the purpose of control
synthesis.

B. Objective

The goal of the agent is to manipulate the input of the
vehicle (Fl and Fr) such that it starts from a point and
reaches a designated destination in an environment subjected
to obstacles and constraints. It is also desired that the agent
drives the vehicle optimally in the sense that the time
required to reach the destination, and the extent of hitting
obstacles or violating constraints, are both minimized. A
layout of the environment, in which the vehicle needs to be
maneuvered is shown in Fig. 2. The start and stop points
are indicated by the red dots. The agent needs to ensure
that the vehicle doesn’t collide with any of the obstacles
(Obstacle 1, 2 and 3 in Fig. 2), and that the vehicle motion
is contained within the cartesian space x, y ∈ [0, 100].

Fig. 2: Schematic diagram of the vehicle model

III. NOTATIONS

Let R denote the space of real numbers, N denote the set
of natural numbers, and Rn denote the space of real vectors
of dimension n. x̃t ∈ R5 denotes the state vector of the
vehicle at the discrete time instant t ∈ N. st ∈ R2 denotes
the cartesian coordinate of the vehicle at the discrete time
instant t. nt ∈ N denotes the zone in which the vehicle
belongs (illustrated in Section V-B) at the discrete time
instant t.

IV. AGENT MODEL

In order to achieve the goal, the Reinforcement Learn-
ing(RL) agent has to take actions depending on the state
observations and reward from the environment as shown in
Fig. 3. Now, to implement such a RL agent, we have chosen
a fully connected Deep Neural Network having 1 input layer,
1 output layer and 2 Hidden layers as shown in Fig. 4, and
for the Network ’Adam’ is chosen as the ’Optimizer’.

For such a DNN model, there are total 3 categories of
parameters, 1. Network parameters, 2. Optimizer Parameters
[6], [7], and 3. Training parameters [7]. Each of these
parameters has several hyper-parameters. Tuning of these
hyper-parameters have significant impact in the performance
of the network. The initial values of these hyper-parameters
are chosen based on experience and later, those are tuned
in a experimental way to achieve better performance. The
parameters are detailed in TABLE I, TABLE II & TABLE
III. The different tried values of a particular hyper-parameter
are separated by ’/’.

TABLE I: Network Parameters
Layers No. of Neurons Activation

Input Layer 5 -
Hidden Layer 1 64/128 ReLu
Hidden Layer 2 64/128 ReLu/Tanh

Output Layer 9/8 -

TABLE II: Optimizer Parameters
Hyper Parameters Values

Learning rate (α) 10−3/10−4/10−5

Gradient momentum (β1) 0.9/0.95
RMS momentum (β2) 0.999/0.95

Gradient Clip-norm -/10/1
Loss MSE/ Huber(δ = 1)

Fuzz factor(ε) 10−8

TABLE III: Training Parameters
Hyper Parameters Values

Batchsize (B) 32/100/200
Replay Memory size (N) 105/5× 106/106

Discount factor (γ) 0.99/0.9999
Exploration range([εmin,εmax] [0.1,1]/[0.01,1]
Exploration decay rate (εdecay) 0.99/0.995

Training (or exploration decay) start 4.5×104/5× 104

Episode Length (No. of Timesteps, T) 100/250/500/1000
Model update frequency (No. of episodes, fm) 15/20/100

3

Fig. 3: Interaction between Envi-
ronment & Agent

Fig. 4: Network Model

V. ARCHITECTURE AND IMPLEMENTATION

In this section, we discuss about various aspects of the im-
plementation framework such as, Action Space, Rewarding
Scheme Exploration Scheme and finally, the implementa-
tion architecture in details.

A. Action Space

Here, we are considering a discrete action space. As
mentioned earlier, there are two control input, Fl & Fr,
whose values are limited within lower & upper bounds.
Now, we define action space as, a = {a1, a2}, each of a1 &
a2 can take values either {-1,0 & 1}. Thus updated control
inputs are given by (9) & (8).

Fl
t+1 =

[
Fl

t + a1
]Fmax

l

Fmin
l

; (7)

Fr
t+1 =

[
Fr

t + a1
]Fmax

r

Fmin
r

; (8)

where, Fl
t+1 & Fr

t+1 denotes the control inputs for next
time instant, Fl

t & Fr
t denotes the control inputs for current

time instant and Fmax
l , Fmin

l , Fmax
r & Fmin

r denotes
respective maximum and minimum value of Fl & Fr.

The structure of action space clearly implies that it is
discrete and total possible actions are {(-1,-1); (-1,0); (-1,1);
(0,-1); (0,0); (0,1); (1,-1); (1,0); (1,1)}. Among them, we
have excluded the action (0,0) to avoid getting stuck at a
particular point. So, the cardinality of the action space is 8.

B. Rewarding Scheme

We have segregated the entire layout shown in Fig. 2 into
10 different zones as detailed in Fig. 5. The numbering of
the zones are done in such way that a zone with higher
number is relatively favorable position to reach the ultimate
goal. For each zone, there are separate target points marked
as red dots on zone transition boundaries in Fig. 5.

Considering a transition st to st+1 in Cartesian coordinate
and corresponding zone transition nt to nt+1 following an
action a the reward at tth time-step is defined as follow,

Rt = (rz + rf +m× nt × rnz + rt + rp)×K; (9)

Fig. 5: Zone-wise Segregation of the Environment

where, K = 0.01 is a normalizing factor, and Rt has
total 5 components (namely rz, rf , rnz, rt and rp) that are
described below,

1) Reward for zone transition

rz =


20nt, nt+1 > nt

−25nt, nt+1 < nt

0, Otherwise

(10)

2) Reward for reaching goal

rf =

{
500, | sfin − st+1 |≤ δ

0, Otherwise
(11)

Here, | sfin − st+1 |≤ δ defines a small ball (shown as a
’green ball’ in Fig.) around the ’Stop’ point.

3) Reward for State Change
This reward component comes into effect only if transi-

tion occurs within a particular zone.

rnz =

{
k−‖star−st+1‖

k ∈ [0, 1], nt+1 = nt

0, Otherwise
(12)

In connection to this reward component, m ∈ {−1, 1}
signifies whether a particular action moves the vehicle
towards the zonal target point or away from it.

m = sign{rnz(t)− rnz(t− 1)}, (13)

4) Cost of time spent
According to this scheme, at each time step a fixed

negative reward will be added. Thus, as a consequence of
taking too much time to reach the goal, the agent ends up
accumulating a large negative reward, thus the agent will
avoid aimlessly wandering over the cartesian-space.

rt = −0.5, (14)

4

5) Cost of hitting prohibited zone
It is obvious that the ultimate goal is to reach the end point

avoiding any kind of obstacles. To incorporate this in our
rewarding scheme, we have specified 4 zones as ’Prohibited
Zone’, and hitting any of these prohibited zones results in
obtaining a large penalty. The Prohibited zones are specified
below,
• Obstacle 1
• Obstacle 2
• Obstacle 3
• Outside Grid
The reward component is specified as follows:

rp =

{
−30, if prohibited zone is hit

0, Otherwise
(15)

C. Exploration Scheme
Initially, an uniform exploration scheme is considered

over all the zones. But we observed that such exploration
doesn’t allow the agent to adequately explore various zones
in the cartesian space. Hence, we have adopted a zone-
wise exploration scheme, where the initial exploration rate
of each zone is set to 1. Now, if in a particular time-step, the
vehicle visits Zone nt, then the exploration rates for all the
zones n ≤ nt decays in a pre-defined constant rate. Using
zone-wise exploration scheme, it is possible to explore more
zones in the environment, hence it in turn helps to populate
the replay memory more effectively, i.e increasing the no.
of useful training data.

D. Implementation Flow Chart
After designing the environment, agent model and reward-

ing scheme, a framework is built in Python inspired by the
one mentioned in [6] to train the RL agent. The algorithm
used for training is Deep Q-Learning. The implementation
flow-chart is self-explanatory and depicted in Fig. 6.

Fig. 6: Implementation Flow Chart

VI. RESULTS

The training is done in HPC cluster, and we found
different outcomes for different choice of hyper-parameters.

The important results are presented below under the 4
different cases:

A. Case-I
• B = 32, T = 250, α = 10−4

• Clip-norm = -, Loss = MSE, εmin = 0.1, N = 105

• No. of Neurons in Hidden Layers = 64, γ = 0.99
• Uniform exploration/reward scheme
In this case, we observe that the mean score is oscillating

after few epochs, and is not following a continually improv-
ing trend. We think the primary reason of this failure is non-
implementation of zone-wise exploration, which motivated
us to enforce zone-wise exploration in the subsequent cases.

Fig. 7: Mean score (running avg over 100 episodes)

Fig. 8: Mean Q-value (running avg over 1000 episodes)

Fig. 9: Network loss

5

B. Case-II

• B = 200, T = 250, fm = 100, α = 10−5

• Clip-norm = 1, Loss = Huber, εmin = 0.1, N = 5×105
• No. of Neurons in Hidden Layers = 128, γ = 0.9999
• Zone-wise exploration/reward scheme
In this case, we used zone-wise exploration. In addition,

we clipped the gradients at unity norm, and used Huber loss
(as opposed to mean squared error in Case I) to make the
process of learning smoother. The learning of the agent has
improved over the last case as depicted by the plots below.
However, Fig. 10 shows that the trained agent only reaches
zone 3; so the training is not yet through.

Fig. 10: Performance of Trained Model

Fig. 11: Mean score (running avg over 100 episodes)

Fig. 12: Mean Q-value (running avg over 1000 episodes)

Fig. 13: Network loss

C. Case-III

• B = 200, T = 1000, fm = 100, α = 10−5

• Clip-norm = 1, Loss = Huber, εmin = 0.01, N = 5×
105

• No. of Neurons in Hidden Layers = 128, γ = 0.9999
• Obstacles removed
• Zone-wise exploration/reward scheme
In order to enable more effective exploration, we elimi-

nate Obstacle 1, 2 and 3 in this case. Our rewarding scheme
is designed such that even in absence of these obstacles the
optimal policy (if learned effectively) shall drive the vehicle
along the desired path (i.e. along the increasing order of
zones starting from zone 1). In addition, we increased the
episode length and the size of the replay memory (albeit
making the computation more memory complex). In this
setting the performance of the agent is found better than the
previous two cases in that the vehicle reaches nearer to the
final goal.

Fig. 14: Performance of Trained Model

D. Case-IV

• B = 200, T = 1000, fm = 100, α = 10−5

• Clip-norm = 1, Loss = Huber, εmin = 0.01, N = 5×
105

• No. of Neurons in Hidden Layers = 128, γ = 0.9999
• Obstacles removed
• Zone-wise exploration/reward scheme
The training setting in this case is identical to the one in

the previous case. Here we retrain the pre-trained network

6

Fig. 15: Mean score (running avg over 100 episodes)

Fig. 16: Mean Q-value (running avg over 1000 episodes)

obtained from Case III, for more number of episodes. As
is it is observed in Fig. 19, the mean score continues to
increase indicating a positive progress of training.

VII. CONCLUSION

In this work, we tried to train a deep Q network to
infer physical state based optimal action for a miniaturized
autonomous vehicle. Our results show that none of the trials
could train the network enough to infer the true optimal
action from the estimated Q-values. Intuitively, we attribute
this failure to the following reasons. First, we observed
that the good samples encountered during exploration, are
very sparse to be picked frequent enough in the training
batches, adversely affecting the training process. Second, we

Fig. 17: Network loss

Fig. 18: Performance of Trained Model

Fig. 19: Mean score (running avg over 100 episodes)

Fig. 20: Mean Q-value (running avg over 1000 episodes)

Fig. 21: Network loss

7

believe that the vehicle dynamics in this particular problem,
is more complex (seen in the switched nonlinearity) than the
environments typically used to demonstrate performance of
RL. As a future extension of this work, we would pursue
implementation of priority sampling, an approach suggested
in [8], [9], to overcome the aforecited first reason. We are
optimistic that a more rigorous hyper-parameter tuning on a
more complex network architecture would possibly alleviate
the concern pertaining to the complex dynamics.

VIII. ACKNOWLEDGEMENT

We are thankful to the course-instructor Prof. S Sarkar,
and all the teaching assistants for their valuable suggestions,
during this work.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] D. Howard and D. Dai, “Public perceptions of self-driving cars: The
case of berkeley, california,” in Transportation Research Board 93rd
Annual Meeting, vol. 14, no. 4502, 2014, pp. 1–16.

[3] C. Urmson et al., “Self-driving cars and the urban challenge,” IEEE
Intelligent Systems, vol. 23, no. 2, pp. 66–68, 2008.

[4] G. Hee Lee, F. Faundorfer, and M. Pollefeys, “Motion estimation for
self-driving cars with a generalized camera,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 2746–2753.

[5] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on intelligent vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[7] J. J. Nutaro, Building software for simulation: theory and algorithms,
with applications in C++. John Wiley & Sons, 2011.

[8] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” arXiv preprint arXiv:1511.05952, 2015.

[9] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforce-
ment learning with less data and less time,” Machine learning, vol. 13,
no. 1, pp. 103–130, 1993.

	Introduction
	Model Description
	Autonomous Vehicle Dynamics
	Objective

	Notations
	Agent Model
	Architecture and Implementation
	Action Space
	Rewarding Scheme
	Reward for zone transition
	Reward for reaching goal
	Reward for State Change
	Cost of time spent
	Cost of hitting prohibited zone

	Exploration Scheme
	Implementation Flow Chart

	Results
	Case-I
	Case-II
	Case-III
	Case-IV

	Conclusion
	Acknowledgement
	References

