
 

Abstract— Locating the source of low-frequency forced 
oscillation is an important aspect of bulk power system 
operation, and it facilitates operator’s intervention to the 
faulty component and timely implementation of mitigation 
measures. In this paper, a novel deep learning-based 
forced oscillation source locator is proposed to infer the 
oscillation-source using data from phasor measurement 
units (PMU). The locator is trained offline using the 
spectral information extracted from the sliding-window 
time-series data from simulated PMU measurements over 
a range of randomly chosen oscillatory events. The 
effectiveness of the proposed method has been validated 
on the Western Electricity Coordinating Council (WECC) 
179-bus test system, comparing with an existing energy-
based method. Noise-robustness of the method has also 
been evaluated.  
 

Index Terms—Forced oscillation source, spectral data 
analysis, phasor measurement unit, deep learning. 

I.  INTRODUCTION 
Low-frequency forced oscillation (LFO) is a phenomenon 

in bulk power system, caused by the action of “exogeneous” 
low-frequency periodic disturbance. Such periodic 
disturbance typically intrudes into the system either from the 
generation end or from any of the connected loads. The 
enhanced real-time power system observability owing to the 
wide deployment of phasor measurement units (PMU), has 
unveiled the ubiquitous presence of LFO events across 
different power systems. Besides having detrimental effect on 
the life of the electro-mechanical components connected to 
the system, such LFO may even precipitate instability if the 
oscillation frequency is close to that of one of the system’s 
natural modes, resulting in resonance [1]. As a mitigation 
measure, disconnecting the oscillation-source from the system 
has been accepted to be more effective in practice [2]. Hence, 
the problem of low-frequency forced oscillation source 
location (LFOSL) finds paramount importance in the practical 
bulk power system operation and has gained wide attention. 

 
 

The problem of LFOSL has been studied over many 
decades in the past [3]. Chen et al. [4] established the 
consistency between energy dissipation and generator 
damping torque, and the oscillation source is identified to be 
the component that contributes to non-dissipating energy 
flow, where the latter is estimated using PMU data. This 
method is restrictive in applications mainly due to its 
assumption of lossless network and a priori knowledge of the 
equilibrium. Maslennikov et al. in their dissipative energy 
flow (DEF) method [2] suggested certain approximations and 
enhancements on Chen’s approach, making it more amenable 
for practical applications. The DEF method is reported to be 
deployed in the ISO New England system [5]. Feng et al. [6] 
built on the energy-based concept and introduced a two-step 
method to pinpoint the oscillatory source at the controller 
level in a generation plant.  

In addition to the energy-based methods, there are a few 
other methods based on the data mining (DM) approach. 
OBrien et al. [7] introduced pattern mining and maximal 
variance ratio for LFOSL using supervisory control and data 
acquisition (SCADA) measurements. Meng at al. [8] 
employed k-nearest neighbors (KNN) for real-time LFOSL 
using PMU data at the generating plants, where data simulated 
from the power system model is used for offline learning of a 
Mahalanobis matrix. Chevalier et al. [9] introduced a 
Bayesian framework to infer LFO source by numerically 
estimating the optimal a posteriori from real-time PMU 
measurements in two stages, given an uncertain simplified 
prior model. Huang et al. [10] proposed a robust principal-
component-analysis formulation of the LFOSL problem with 
the assumption that the matrix formed by the measurements at 
buses can be decomposed into a low-rank matrix and a sparse 
residue. Other than the energy-based and DM-based methods, 
Zhou et al. [11] proposed an LFO source tracer using the 
relative magnitude and phase of the transfer functions 
(between bus voltage angles of the pairs of buses) at the 
oscillation frequency by assuming the availability of the 
classical model parameters and the independence of responses 
due to each machine. 

The power systems community is yet to converge on any of 
the proposed LFOSL methods, due to their restrictive 
assumptions, occasional inaccuracies, and/or 
implementational difficulties. In this paper, a deep learning-
based alternate approach is proposed to locate the LFO source 
in real-time using frequency-domain data extracted from 
PMU measurements. The proposed deep-neural-network 
(DNN) is featured by a convolutional LSTM layer [12], where 
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the input is a temporal sequence of spectral snapshots (both 
magnitude and phase responses) computed by preprocessing 
the fixed-length sliding windows extracted from time-series 
PMU measurements including bus frequency, active and 
reactive power injections. The proposed approach is found to 
be more accurate than the energy-based method [4] on a 
simulated dataset generated using the WECC 179-bus test 
system. Moreover, it also shows robustness to measurement 
noise typically observed in PMU data. 

 The rest of the paper is organized as follows. Section II 
presents the proposed DNN-based framework and the 
frequency domain feature engineering. Section III discusses 
the experimental results on the WECC 179-bus test system 
and the comparison with an existing energy-based method. 
Section IV concludes the paper. 

II.  DNN-BASED LFOSL FRAMEWORK 

The low-frequency forced oscillations (LFO) occur in bulk 
power system due to exogenous periodic disturbances that 
typically intrude into the system either from the generation 
end (e.g., through the mechanical input power or the signal 
received from the automatic voltage regulator) or from any of 
the connected loads due to the presence of cyclicity. Based on 
the amplitude of the LFO response typically observed in 
practice, both industry and academia assent to study such 
events by small-signal analysis, i.e., the system is linearized 
around the operating equilibrium to analyze its response to the 
low-frequency periodic disturbances. Although it is tempting 
to assume that such response should exhibit higher oscillation 
amplitude at and near the source-bus, the assumption is not 
valid if the frequency of oscillation is close to the frequency 
of any of the distant local, interarea modes of the linearized 
system causing resonance. In such case, the oscillation can be 
prevalent at a distant non-source bus corresponding to the 
local mode (respectively, a group of buses dominantly 
participating in the concerned interarea mode), making the 
LFOSL problem difficult. An excellent analytical treatment to 
the aforesaid possibilities is available in [10]. 

A.  Overview of the Proposed Framework 
The proposed DNN-based LFOSL framework is 

schematically shown in Fig. 1, which comprises of an “offline 
training” and a “real-time inference” phase. The “offline 
training” phase includes data collection, training of the 
proposed DNN, model selection through cross-validation and 
model evaluation on test dataset. The dataset can compose of 
field measurements of real LFO cases of a system, or 
simulated instances in absence of field measurements, or a 
combination of both. In the latter case, the user needs to 
provide the generator and line parameters of the system and 
an approximate nominal operating point. The proposed 
framework does not rely on strong modeling assumptions, and 
the exact load and generation schedule are not required. A 
time-domain simulation routine (TDS) is used to simulate 
multiple LFO cases, each with the system operating point and 
parameters perturbed randomly around the nominal condition, 
and with the oscillation source chosen randomly. The 
frequency-domain information extracted from the data 
together with the “one-hot-encoded” labels of LFO sources 

are used to train, cross-validate and evaluate/test the DNN-
based LFOSL. After it achieves the desired level of accuracy 
on the test data, the trained DNN-model is deployed to infer 
LFO source for the system based on real-time measurements. 

In real-time inference phase, the trained and evaluated 
DNN-based LFOSL is used in tandem with an upstream LFO 
detector to infer LFO source from real-time measurements. 
The LFO detector is, however, beyond the scope of this paper, 
and one of the existing LFO detection techniques [13], [14] 
may be used for this purpose. Once the presence of LFO is 
detected, a sequence of fixed length sliding windows of 
measurements are extracted from the PMU samples. These are 
then denoised through a low-pass filter as the input to the a 
trained DNN to locate the LFO source. 

B.  Data Extraction and Spectral Feature Engineering 
Let 𝑠! denote the discrete sample index corresponding to 

the detection instant of the upstream LFO detector. Assuming 
PMU measurements are available at every fixed time interval 
𝜏, the sequence of sample indices of the following 𝑁 numbers 
of sliding 𝐿-samples long windows with fixed slide-hop 
length of ℎ-samples is given by: 

 𝑇" ≔ ((𝑠! + 𝑛. ℎ)⊕ {1,2, … , 𝐿}	|	𝑛 ∈ {0,… ,𝑁 − 1}:	 (1) 

where the operator ⊕ adds its left operand, a scalar, to each 
element of the right operand set. Here, the 𝑛#$ element of the 
sequence 𝑇" denotes the set of 𝐿 sample indices corresponding 
to the 𝑛#$ measurement window. Fig. 2.(a) schematically 
illustrates the extraction of 𝑁 numbers of ℎ-hop 𝐿-length 
sliding measurement windows from the PMU samples after an 
LFO detection, where the horizontal arrow denotes the 
progressing time axis, the vertical arrows denote the arriving 
PMU samples, and the 𝑛#$ green box denotes the 𝑛#$ 
measurement window. 

Let there be 𝑀 possible sources of LFO in the system, which 
may include the generators and the loads, and we use 𝑄 
different measured quantities (e.g., frequency, power, etc.) at 
every possible source bus. Based on our experimental results, 
we suggest three measured quantities, namely, the frequency 
and the active and reactive power injections at the possible 
source buses to form the measurement set (i.e., 𝑄 = 3). The 
bus voltage magnitude is not recommended since an LFO 

 
Fig. 1.  Overall DNN-based LFOSL framework 
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usually exhibits very low amplitude in voltage magnitude, and 
it may be difficult to reconstruct the LFO signal from noisy 
voltage measurements. The time-domain measurement set to 
be used as the raw input data is given by: 

𝒟",& ≔ (𝐷',( ∈ ℝ)×+	|	𝑛 ∈ {0,…𝑁 − 1}, 𝑞 ∈ {1,… , 𝑄}:  (2) 

where the (𝑙,𝑚)#$ element of the matrix 𝐷',( represents the 
measured value of the 𝑞#$ quantity, measured at the 𝑙#$ sample 
index of the 𝑛#$ window, by the PMU placed at the 𝑚#$ bus. 
 

(a) 

 
(b) 

 

Fig. 2.  Illustration of data extraction and preprocessing. (a) extraction of 
sliding windows from PMU data after detection of an LFO. (b) preprocessing 
steps performed on the measurements in the 𝑛!" window.  
 

Any oscillatory response of a system is fundamentally 
characterized by a periodic signal of certain frequency, 
amplitude, and phase, or a superposition of multiple such 
signals. The spectral information extracted from an oscillatory 
time-series data contains these important attributes and hence, 
may be more causal compared to its raw time-domain form in 
data-driven identification of the LFO source. This motivates 
us to use the frequency-domain snapshots (comprising of both 
magnitude and phase responses) of the PMU measurements 
for DNN-based LFOSL. The LFOSL performance 
enhancement using frequency-domain input over its time-
domain counterpart, has been substantiated through the 
experimental results presented in Section III.  

Traditionally, fast Fourier transform algorithm (FFT) has 
been used to estimate the frequency response from finite 
samples of measurements of a signal. However, the key issue 
with FFT is the leakage, which is the error introduced if the 
value of 𝐿. 𝜏 is not an integer multiple of the actual time period 
of the underlying oscillation. Such error is unavoidable in 
FFT-based methods, where the oscillation frequency is not 
known a priori. Also, an oscillation in power system may 
comprise of multiple non-harmonic frequency components, in 
general, posing additional challenges. To minimize leakage, 
Hanning window [15] is applied by scaling the detrended 𝐿 
samples of a window by the corresponding Hanning 
coefficients. Moreover, the suggested sequence of 𝑁 sliding 

windows (instead of only a single one) further makes the 
DNN-based LFOSL inference robust to the residual leakage 
that may still remain in the frequency response. 

Fig. 2.(b) shows a schematic illustration of the spectral 
information extraction from the 𝑛#$ measurement window. 
Each window contains 𝑄 different 𝐿-length time-series 
measurements over 𝑀 possible LFO source buses. The 
subsequent preprocessing is performed individually on each 
measurement matrix 𝐷',(, i.e., the measurements of quantity 
𝑞 over 𝑀 buses extracted from the window, for all 𝑞 ∈
{1,… , 𝑄}. For each bus, the frequency response of the 
measured quantity 𝑞 is estimated by running FFT on the 
Hanning-scaled, denoised, and detrended version of the time-
domain measurements. Only the right-sided frequency 
response is considered, generating magnitudes and phases 
over a range of ⌊𝐿/2⌋ + 1 discrete frequencies denoted by 𝐹. 
Since frequencies lower than 1 𝐿. 𝜏⁄  Hz cannot be reliably 
estimated using the 𝐿-length window, the truncated frequency 
range 𝐹# ⊂ 𝐹 that includes the frequencies equal or above 
1 𝐿. 𝜏⁄  Hz is used. By stacking the computed magnitude 
(respectively, phase) responses corresponding to the 
respective 𝑀 buses as the columns, we form the matrix 
𝑋L',,(-. (respectively, 𝑋L',,(), which contains the spectral 
information pertaining to the 𝑞#$ measured quantity over all 
possible LFO source buses, for the 𝑛#$ window. Accordingly, 
the overall frequency domain data that we compute for a given 
LFO scenario, is compactly denoted by the following set: 

𝒳"!,#$ ≔ $𝑋&%,&' ∈ ℝ(!×*	|	𝑛 ∈ {0,…𝑁 − 1}, 𝑐ℎ ∈ {1,… ,2𝑄}8   (3) 

where the subscript 𝑐ℎ corresponds to the “input channel” of 
our DNN. A normalized version of 𝒳"!,#$, denoted 𝑋",,&, is 
used as the input to the DNN model, where 2𝑄 is the total 
number of input channels each of dimension 𝐹# ×𝑀, and 𝑁 is 
the length of the input sequence. 

Fig. 3 provides a schematic summary of our data-
preprocessing pipeline. The set 𝒟",& contains 𝑁.𝑄 numbers 
of 𝐿 ×𝑀 matrices of time domain data, each of which (e.g., 
𝐷',() is transformed into a corresponding frequency domain 
pair (e.g., 𝑋L',,(-., 𝑋L',,() of dimension 𝐹# ×𝑀, forming the 
intermediate set 𝒳P",,&, which is finally normalized to 𝑋",,&.  

 
Fig. 3.  Illustration of the formation a 2𝑄 channeled sequential input for the 
convolution LSTM layer from the ℎ-hop 𝐿-length 𝑁 sliding windows of 𝑄 
measurements, for a single LFO scenario.   
 

It is practical to consider only a single source of LFO while 
generating each simulation-based LFO scenario, since the 

𝒟",$
𝒳&",'$

𝑋",'$
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coexistence of multiple simultaneous LFO sources is unlikely. 
The true LFO source for a given scenario is represented by an 
𝑀-dimensional one-hot encoded vector 𝑦. The duple 
{𝑋",,& , 𝑦} forms a single data instance for our DNN. 

C.  Proposed DNN Architecture for LFOSL 
The spectral feature engineering introduced in the previous 

subsection enables usage of a convolutional LSTM [12], which 
is capable of spatiotemporally correlate the spectral features 
underlying the oscillatory measurements, facilitating an 
effective supervised learning to predict the LFO source. Our 
proposed DNN architecture is shown in Fig. 4. 

  

 
Fig. 4. Deep-neural-network architecture proposed for LFOSL 

 
The first layer is a 2-D convolutional LSTM that takes the 

𝑁-length sequence of 2𝑄 channeled frequency domain 
snapshots of the system’s response each of 𝐹# ×𝑀 dimension 
as its input, and outputs a non-sequential temporally (along 𝑛-
axis), spectrally (along the axis of 𝑓 ∈ 𝐹#) as well as spatially 
(along 𝑚-axis) correlated summary. The next three 2-D 
convolutional layers extract features from this summary with 
ReLu activation functions. A maxpooling layer is added after 
each of the first two layers to make the learned features robust 
to local perturbations and to reduce the feature size for the 
deeper layers of the DNN enabling lower-level feature 
learning. The output layer is a fully-connected linear layer 
with the number of neurons identical to the possible number 
of LFO sources 𝑀, and receives 1-D data after appropriate 
reshaping (as shown in Fig. 4 by the flatten operation) of the 

previous layer’s output. A softmax function is applied to the 
computed output 𝑦S ∈ ℝ+ to map the latter into a 𝑀 
dimensional probability vector 𝑦T. The index corresponding to 
the maximum valued element of 𝑦T points to the LFO source 
as inferred by the DNN. The data dimensions at the output of 
the hidden layers, as mentioned within round brackets in Fig. 
4, and the dimensions of the convolution kernels and strides, 
correspond to those used in the experimental results in Section 
IV. The Kullback-Leibler divergence (identical to the cross-
entropy since 𝑦 is one-hot encoded) of the estimated data 
distribution (e.g., 𝑦T given 𝑋",,&) to the true one (i.e., 𝑦 given 
𝑋",,&) is minimized during the training of the DNN model, 
which for a batch-size of 𝐵 is given by:   

ℒ ≔
1
𝐵WW 𝑦/,0 log [

𝑦/,0
𝑦T/,0

\
+

01.

2

/1.

																								(4) 

where the subscripts 𝑏 and 𝑚 denote the data instance number 
in a batch and the output index respectively. Since the DNN 
model is trained with back-propagation using the whole 
training data split into multiple batches, batch-normalization 
(BN) [16] is used after each of the first four layers, which 
helps to reduce the internal covariance shift during training. 

III.  CASE STUDY ON WECC 179-BUS SYSTEM 

A.  Data Simulation & Preprocessing 
Although the IEEE Taskforce has made available several 

manually crafted LFO data instances simulated on WECC 
179-bus test system [17], more data is needed to carry out an 
effective supervised learning training process. For automated 
data generation using the same WECC 179-bus model, the 
TDS-routine of the open-source tool PSAT [18] is extended 
for LFO simulations and coupled with a Siemens PTI PSS/E-
format power system model data-parser, extending an 
interface available with MATPOWER [19].  

A total of 4553 data instances were generated by repeatedly 
running the TDS routine. In each TDS case, the operating 
point was set by solving power-flow after perturbing the load 
by 𝑢%. The value 𝑢 was randomly chosen independently for 
each connected load. The net change in the active power 
demand (if any) was assumed to be shared among all the 
generators according to their nominal proportion. The 
diverging power-flow cases or the ones having any unstable 
small-signal mode were discarded. The 29 generators in the 
system were considered to be the possible LFO sources, i.e., 
𝑀 = 29. During TDS, the exogenous disturbance was 
simulated by applying additive periodic noise of frequency 𝑓𝑟 
and magnitude 𝑝% of that of the nominal signal (or a 
superposition of at most two such noises), either to the 
mechanical power input or to the 𝑞-axis internal voltage of 
one of the generators. The number of frequency components 
in the disturbance, their waveshape, and the quantities 𝑓𝑟 and 
𝑝 were randomly selected in each TDS case independently. 
Such disturbances were triggered at 10 seconds during the 
simulation and remained thereafter.  

Although the availability of an upstream LFO detector is 
assumed, it is recognized that the detection latency of such a 
detector may vary from one LFO case to another and cannot 
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be ascertained a priori. Hence, the sample index 𝑠! 
corresponding to LFO detection was randomly chosen from 
the samples within the simulation interval of [20, 25] seconds 
for each TDS case. The specifics of the randomly chosen 
parameters are enumerated in Table I. It was noted that a few 
LFO led to short-term angle instability, which might occur if 
an LFO-caused resonance drifts the operating-point out of the 
stability region of the dynamic equilibrium. Such cases were 
discarded from the simulation dataset since the goal was to 
generate a dataset with cases exhibiting sustained LFO. In 
practical applications, the parameters of Table I needs to be 
set carefully so that the generated data represent real-life 
operating scenarios well enough, in order to achieve the 
desired generalization capability of the DNN model. 

 
TABLE I 

 Randomly Selected Parameters in each TDS 
Parameter Name Range/set of Random Choices 

Load perturbation (𝑢) [0, 20] % of nominal value 
Source of LFO disturbance Generator # {1, 2, …, 29} 

Signal to add disturbance on {Mechanical power input, 𝑞-axis 
internal voltage} 

Disturbance frequency (𝑓𝑟) [0.1, 1.5] Hz. 
Disturbance magnitude (𝑝) [5, 10] % of nominal signal magnitude 

No. of frequency components 
in a disturbance {1, 2} 

Disturbance waveshape {square, sinusoidal} 
LFO detection instant [20, 25] sec. 

 
The data preprocessing was performed using the Python 

package Numpy (version 1.18.5). To prepare the input data 
𝑋",,&, a window-length of 𝐿 = 350 was chosen with 
sampling interval 𝜏 = 30 msec., so that a frequency 
component of as low as 0.1 Hz could be estimated by FFT. 
The number of measured quantities 𝑄 = 3 comprised of bus 
frequency injected active and reactive powers. A slide-hop 
length ℎ = 50 samples was chosen with the total slides of 𝑁 =
12. Each preprocessed input 𝑋",,& to the DNN model has the 
dimension of 12 × 175 × 29 × 6. 

B.  DNN Model Training and Evaluation 
The DNN construction and its training were implemented 

using the Python-package TensorFlow (version 2.3.1). The 
10% of the 4553 preprocessed data instances were randomly 
selected and kept aside as test dataset to evaluate the 
generalization capability of the selected DNN models. The 
rest was randomly split for training and cross-validation in 8:2 
proportion prior to each training trial. The loss computed on 
the cross-validation dataset was used to select the best model, 
searched by tuning the model hyper-parameters. Adam [20], 
the adaptive momentum-based stochastic gradient decent 
algorithm was used to minimize the loss function (4) by 
backpropagation. A dropout rate of 25% was used to avoid 
overfitting on the training data. The training was continued for 
150 epochs with a batch-size of 200, while the batch-
formation was performed randomly after each epoch of 
training.  

C.  Performance Comparison of DNN-based Methods 
To compare the performance of the proposed Convolutional 

LSTM-based DNN architecture with frequency domain input, 

the alternative approaches include using time-domain PMU 
measurements as inputs and using a regular LSTM-based [21] 
classifier. Table II shows the accuracies of three different 
DNN-based models used for the performance comparison: 
Case I is the proposed Convolutional LSTM model (see Fig. 
4 for the hyper-parameters of the selected best-performing 
model) with frequency-domain data as inputs, Case II uses 
time-domain data as the Convolutional LSTM model inputs, 
and Case III uses the time-domain data on a regular LSTM-
based DNN model. The training/validation loss of Case I, 
Case II and Case III are presented in Fig. 5.  

 
TABLE II  

Comparison of Performance of Different DNNs 

Cases DNN  
Architecture 

Input 
Type 

Training 
Accuracy 

(%) 

Validation 
Accuracy 

(%) 

Test 
Accuracy 

(%) 
Case I 

(proposed) 
Convolutional 

LSTM 
Frequency 

domain 99.93 98.71 98.59 

Case II Convolutional 
LSTM 

Time 
Domain 86.61 72.77 72.82 

Case III Regular LSTM Time 
Domain 96.97 87.65 88.34 

 

 
Fig. 5. Training and validation loss (averaged over the respective batches) 
over 150 training epochs for the three respective cases, accuracies of which 
are reported in Table II. Note that the validation losses are computed after 
completion of the respective training epochs. 
 

Specifically, Case II uses a convolutional LSTM-based 
DNN with the stride on the convolutional LSTM increased to 
4 × 1, which makes the output data dimensions of the hidden 
layers to remain the same to those of Case I. The input data is 
the normalized version of 𝐷",& of (2) as opposed to 𝑋",,& used 
for Case I. As seen in Table II and Fig. 5, Case II did not 
perform well compared to Case I model. Case III model 
employs a regular LSTM cell with output dimension 50 with 
50% drop out, followed by a fully connected linear layer of 29 
neurons with the softmax operator at the output. The 
measurements were first down-sampled to match 0.3 sec. 
sample interval, and then the sequence of 70 such samples 
(starting from 𝑠!) of 𝑄-dimensional normalized measurements 
were used as the input. It is found that increasing model 
parameters or reducing the drop-out percentage in the LSTM 
model would cause overfitting of the model at the early stage 
of training and worsen the final validation loss. In addition, 
the proposed convolutional LSTM architecture of Case I is 
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recommended over the regular LSTM due to the presence of 
multiple fully-connected layers embedded in a single LSTM 
cell, which increases its model-complexity (in terms of the 
number of parameters) as the power system under study 
becomes larger (due to increase in the input dimension). This 
may impose restrictions on the scalability of the regular 
LSTM-based model, whereas convolutional LSTM, with the 
convolution kernel size being invariant to the value of 𝑀 
(hence, invariant to the power system’s size), does not face 
such scalability issue.  

The noise robustness of the Case I DNN model has been 
evaluated after adding 45 dB white noise to the test dataset. 
Specifically, all 𝑄 measurement quantities at each sample 
instant were perturbed independently by 45 dB random noise, 
, which has been shown to be adequate to model noisy PMU 
measurements [22]. A stable digital Butterworth low-pass 
filter of order 6 with corner frequency of 1.5 Hz was applied 
on each time-domain window. An accuracy of 91.81% was 
achieved on the noise-corrupted test dataset, demonstrating 
the noise robustness of the proposed approach. 

D.  Comparison with Energy-based Method 
The energy-based method in [4] has also been implemented 

to compare with the results from the proposed DNN approach.   
The energy-based method has shown an LFOSL accuracy of 
96.4% on the simulated data. This further validates the 
effectiveness of the proposed DNN approach as the results in 
Case I have shown comparable and better performance.  

It is noted that the energy-based method is restrictive in 
general, due to its assumption of lossless network, constant 
impedance load and a priori knowledge of the equilibrium, but 
it has the advantage of not requiring any knowledge of the 
system’s dynamic model. In contrast, our proposed 
framework does not have any of the restrictions as posed by 
the energy-based method and does not require a dynamic 
model with accurate load and generator dispatch schedule for 
practical applications.  

IV.  CONCLUSION 

A deep learning-based approach is presented for low-
frequency forced oscillation source location (LFOSL) for bulk 
power systems. The proposed deep neural network (DNN) 
model takes a sequence of spectral snapshots (both magnitude 
and phase responses) extracted from the sliding-window time-
series of PMU data as input. The proposed method was 
implemented on the WECC 179-bus test system, which was 
used to simulate various forced oscillations cases (a total of 
4553 cases) for the purpose of supervised learning. The results 
showed that the proposed approach is more accurate in 
locating the source of oscillation than an existing energy-
based method on the unseen dataset and is adequately noise 
robust with 91.81% LFOSL accuracy on data with white noise 
of 45 dB power level. Our results also demonstrated that the 
DNN trained using frequency domain data outperforms those 
trained using time domain data for the same objective. Our 
future work will focus on investigation of natural oscillation 
source location for bulk power systems using deep learning-
based methods. 
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