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Abstract—An engineered system is designed to deliver certain
performance related to its quality-of-service, and while doing so,
it must also maintain stable operation. Resilience of a system is
its ability to continue to offer system performance stably, while
withstanding any adverse events. Motivated by this concept, we
propose to measure the resilience level of a power system by
quantifying its stability level as measured by: transient stability
margin (TSM), critical clearance time (CCT), relay margin (RM),
and load security margin (LSM), as well as its performance level
as measured by: load loss (LL) and recovery/repair time (RT)
while being exposed to adverse events. For comparability, we
also propose a normalization for each of the 6 measures to a
number in the unit interval [0, 1], which is scale-invariant, and
further probabilistically average each of those across all possible
sequences of faults (of a specified length) against their occurrence
probabilities to arrive at a set of 6 unit-interval valued indices.
New polynomial complexity algorithms (in the number of gener-
ators) are proposed for estimating TSM (in form of volume of
region of stability) and CCT; new quadratic program formulation
for precise computation of RM is developed and implemented;
also, new security and stability informed notions of LSM and
LL are introduced and implemented by extending continuation
power flow. Such quantification of resilience levels provides a
numerical measure to compare the relative abilities of different
power grids to withstand the impact of sequences of adverse
events. The proposed approach is illustrated by computing and
comparing the resilience of three similar power system topolo-
gies differing only in the location of generators. The framework
is further validated by implementing it on the IEEE 30-bus test
system.

Index Terms—Contingency screening, critical clearance time
(CCT), cyberphysical systems (CPSs), region of stability (RoS),
relay margin (RM), resiliency, stability margin, static security
margin.

I. INTRODUCTION

RESILIENCE is a key system property of its ability to
continue to provide quality-of-service/performance with-

standing disruptive faults/attacks [1], which in turn requires
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its continued stable operation. Given the frequency of recent
outages [2] in power systems, a class of critical infrastructures,
understanding and quantifying its resilience are of paramount
importance. Since the occurrence of disturbances and faults
can affect both the stability and the performance levels, one
way to quantify the resilience level is by quantifying the post-
fault-clearance stability level as well as performance level.
In our work, the stability levels are measured using: tran-
sient stability margin (TSM), critical clearance time (CCT),
relay margin (RM), and load security margin (LSM), while
the performance levels are measured using: load loss (LL)
and recovery time (RT).

Resilience is more encompassing than security, which for
a power system, refers to its ability to survive imminent
(high probability) disturbances and contingencies without any
consequential interruption of customer service [3], as man-
dated by the North American Electric Reliability Council
(NERC) [4]. However, the levels of security/stability/relay
margins and clearance/recovery times may differ, which can
impact the effect of exposure to newer contingencies. Thus,
a measure of resilience of a power system against disruptive
contingencies should also include their impacts beyond the
interruption to customer service, namely, impacts on secu-
rity/stability/relay margins and the clearance/recovery times,
as it has been done in our proposed approach. According to
the National Infrastructure Advisory Council (NIAC) [5], the
resilience of an infrastructure is defined to be its ability to
reduce the magnitude and/or duration of disruptive events.
Rather than providing a specific way of quantifying resilience,
NIAC report [5] maps resilience to: robustness, resourceful-
ness, rapid recovery, and adaptability. In our setting, the
notions of TSM, CCT, RM, LSM, LL reflect both the initial
robustness of the system as well as its dynamic resourceful-
ness (i.e., reconfiguration or recovery upon faults), whereas
the notion of RT captures rapid recovery. Finally, the adap-
tation is enabled by evaluation of the proposed 6 measures
and identifying any need for system enhancements to improve
those measures.

Prior related works of the other researchers is summa-
rized in Section I-A, while this paragraph discusses our own
initial work on the topic [6], in which only the quantifica-
tion of TSM in terms of size of region of stability (RoS),
the amount of load service, and RT was proposed. The
RoS was estimated by a backward reach computation, start-
ing from an equilibrium point and following the gradient of
the potential energy function by solving a Hamilton–Jacobi–
Isaacs PDE using the level set toolbox [7], having computa-
tional complexity exponential in the number of generators.
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The analysis was further limited to a single fault/attack
sequence.

The contributions of this article are summarized as follows.
1) A key contribution of this article is to introduce stability

as well as performance-based measures to characterize
the resilience level of a power system in terms of six
indices: TSM, CCT, RM, LSM, LL, and RT values of
the subsystems resulting from different possible fault-
sequences (the approach of analyzing such subsystems is
inspired from [8]). Next, these values are normalized to
make them uniform in the range [0, 1] and thus compa-
rable. Finally, those are averaged against the occurrence
probabilities of the fault-sequences to provide a set of
6 unit-interval valued indices for each power system. It
substantially extends the concepts and methods proposed
in our earlier work [6]. Also, the proposed 6 indices are
quite comprehensive, and in fact, only to 2 of those (LL
and RT) are needed to derive a recently proposed mea-
sure, namely, time-integral of load served (TILS) [9],
[10]. The other indices offered by our proposed frame-
work reveal additional insights related to resilience.

2) We present a novel polynomial complexity computation
(in the number of generators) of TSM, as measured by
the volume of RoS. We do this by extending a sum of
squares (SoS) optimization-based method, which was
introduced in [11], and thereafter, has been employed to
solve numerous control and stability related problems
(see for example [12]). We propose a SoS-based method
to find a Lyapunov function, and its sublevel set esti-
mates the RoS [13], [14]. Our estimate of the size of RoS
is in the form of a maximal volume inscribed ellipsoid,
obtained employing a linear matrix inequality (LMI)-
based optimization, adopting the method of finding the
maximum volume ellipsoid inscribed in an intersection
of ellipsoids [15]. This resulting approach is of poly-
nomial complexity (in the number of generators). The
earlier approaches (e.g., [13]) used numerical integration
to compute the volume of RoS, which is of exponential
complexity. Also, the backward reachability-based
method adopted in [6] for approximating RoS scales
exponentially with respect to the number of generators,
and it further requires a well-defined energy func-
tion [16], which does not exist in general for a power
system possessing transfer conductance (see [17], [18]).
Our approach works for power systems with transfer
conductance, and also for those possessing larger rela-
tive angles at the equilibrium, in contrast to several other
approaches for estimating RoS [6], [14], [19]–[23].

3) Our proposed SoS and LMI-based RoS and its volume
estimation, enables the estimation of CCT (the time
within which a fault must be cleared to retain stability,
providing a practical time-margin for stability) by
way of post-fault simulation to determine the time
when the operating point crosses the boundary of the
estimated RoS, which we have also implemented. This
provides an alternate means of characterizing CCT in
contrast to the controlling unstable equilibrium point
(CUEP)-based method [24].

4) We introduce and implement a new quadratic-
constrained-quadratic-program (QCQP)-based precise
computation of RM of a fault, which is the margin
to false-tripping of a nondesignated relay due to the
swings/transients arising after clearance of a fault by
the designated relay. The notion of RM was introduced
in [25] and is equivalent to the fault norm in [26] and
the severe contingency indicator (SCI) in [27].

5) We introduce the security as well as stability informed
notions of LSM and LL to account for: a) the available
margin for load increment prior to violation of any of
the security or stability constraints and b) the required
load shedding, when such margin is negative. We extend
the continuation power flow (CPF) [28] to implement
computation of these two measures.

6) We implement all the above methods in MATLAB
and illustrate with respect to three 7-bus test systems
differing from each other only in the locations of
generators, against all possible length-2 contingencies
(a total of 582 cases). To further validate the proposed
framework, we implemented it on the IEEE 30-bus
test system and computed its resilience measures with
respect to all faults (a total of 73 cases).

A. Related Works

A literature search reveals a few prior works on
resilience quantification in the domain of power systems.
Kinney et al. [29] suggested measuring the damage of occur-
rence of a fault in form of the loss of average normalized
grid efficiency, where the efficiency of distribution between
substation i to j is defined as the harmonic composition of
efficiency of the edges along the most efficient path con-
necting i and j. Maliszewski and Perrings [30] defined the
resilience of a power system using two factors: 1) the avail-
able infrastructure, the biophysical environment and their
interaction and 2) priority of restoration to the utility company
and their expected response time. Francis and Bekera [31]
introduced the notion of an uncertainty-weighted resilience
measure involving absorptive capacity, adaptive capacity and
recovery, and restorative capacity. A system-level measure to
quantify the resilience of smart grid is also proposed in [32],
which integrates five indices: 1) expected hazard frequency;
2) initial failure scale; 3) maximum impact level; 4) RT;
and 5) recovery cost. To facilitate planning, design, invest-
ment, and operation of energy systems, [33] formulates a
resilience matrix, where each entry of the matrix correlates
how a system’s ability to [plan/prepare, absorb, recover, and
adapt] to an energy-related change can be improved by mea-
sures taken in the [physical, information, cognitive, and social]
domain. Willis and Loa [34] summarized resilience measures
of energy distribution systems, where the metrics are: inputs
available to support resilience, capacity to organize those
inputs to support resilience, capabilities of what tasks can be
performed,apparent impedance seen and the performance and
outcomes that describe what is produced by an engineered
system. Arghandeh et al. [35] qualitatively discusses resilience
of a power system and contrasts it from the related notions of
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stability, robustness, and reliability; no formal quantification
of resilience is provided. Panteli et al. [9] proposed quantifi-
cation of decline in the resilience level of a power system
under a given sequence of events by the time-integral of LL,
which is a function of LL and recovery-time, and hence, is
also captured in our framework. A time-integral-based method
is also used in [10] for quantifying resilience of energy and
water distribution systems, modeling their interdependency.
Soman et al. [27] considered an indirect way of assessing
transient stability against a fault by way of measuring the
angle trajectory sensitivity with respect to a line impedance
(following a fault); the sensitivity becomes higher as the oper-
ating point gets closer to the boundary of RoS. Other indirect
measures of transient stability that have been examined in the
literature include: RM and RSM [25] that are computed based
on the apparent impedance seen by a relay [27]. We do exam-
ine an indirect measure of transient stability, namely, CCT, as
defined in Section III. In addition, we also employ a direct
quantification of the TSM in form of an inner approximation
of the volume of the RoS (of the post-clearance subsystem).

The notion of resilience has also been explored outside
power systems. Filippini and Silva [36] provided a general
modeling framework to represent the interdependent modern
infrastructures in order to support reasoning of system vul-
nerabilities and overall resilience. Fujita et al. [37] proposed
an approach that allows integration of the state-of-the-art
solutions of “granular computing” into different phases of
resilience analysis of critical infrastructures. Zeng et al. [38]
suggested the ability of a cyberphysical network to recover
from cascading failures caused by an adversarial attack, to be
a key measure of resilience and explores network topology
designs to determine the tradeoff between resilience versus
operational efficiency.

II. PRELIMINARIES

R (resp., R≥0 and R+) denotes the space of all real (resp.,
non-negative real and positive real) scalars. R

n denotes the
space of real vectors of dimension n. For any x ∈ R

n and
p ≥ 1, ||x||p denotes the p-norm of x.

A. Power System Model

In order to present our approach of computing various
resilience measures, we employ the classical power system
model, described next. When a power system comprising of M
buses and N generators, is at an equilibrium (so the dynamical
variables are constant at their equilibrium values), one solves
a set of algebraic power flow equations to obtain the values
of the unknown variables (generator bus voltage angle and
reactive power, load bus voltage phasor, slack bus active, and
reactive powers) given the values for the known ones (gener-
ator bus voltage magnitude and active power, load bus active
and reactive powers, slack bus voltage phasor). For each bus
i in the system, letting PGi, QGi, PLi, QLi, Vi, and δi denote,
respectively, the injected active power, injected reactive power,
load active power, load reactive power, bus voltage magni-
tude, and its angle (measured relative to the slack bus voltage
angle), the power flow equations for the bus i ∈ {1, . . . ,M}

are given by

PGi =
M∑

j=1

ViVjYij cos
(
θij − δi + δj

) + PLi

QGi =
M∑

j=1

ViVjYij sin
(
θij − δi + δj

) + QLi (1)

where Yij∠θij denotes the (i, j)th element of the bus admit-
tance matrix. Knowing the values Vi∠δi from the solution of
the above power flow equations (typically solved by Newton–
Raphson’s method), one can also compute the generator q-axis
voltage phasor denoted by Ei∠δ′i for the generator i connected
to bus i using the following equation for i ∈ {1, . . . ,N}:

Ei∠δ′i = Vi∠δi + zi

M∑

j=1

Yij∠θij
(
Vi∠δi − Vj∠δj

)
(2)

where zi denotes the direct-axis transient impedance of the
generator i. The above power flow equations can be rewrit-
ten in Kron-reduced form that absorbs the generator transient
impedances, elements of bus admittance matrix, and the load
admittance into a single reduced admittance matrix, and is
given as below for i ∈ {1, . . . ,N}

PGi =
N∑

j=1

EiEjY
′
ij cos

(
θ ′

ij − δ′i + δ′j
)

QGi =
N∑

j=1

EiEjY
′
ij sin

(
θ ′

ij − δ′i + δ′j
)

(3)

where Y ′
ij∠θ ′

ij denotes the (i, j)th element of the Kron-reduced
admittance matrix.

For the transient stability analysis, each generator is mod-
eled by the classical swing equation, which for the generator
i ∈ {1, . . . ,N} is given by:

δ̇′i,N = ωi − ωN (4)

Miω̇i + Diωi + PGi = Pmi (5)

where for the ith generator, Mi, Di, Pmi are constants denot-
ing inertia, damping, and mechanical power input, ωi denotes
the speed and δ′i,N denotes the q-axis voltage angle relative
to that of the Nth generator considered as the reference. Pmi

equals the sum of Diωi and PGi evaluated at the equilibrium,
which can be seen by setting the derivative term to zero in (5).
During transients, however, δ′i,N , ωi and PGi in (5) are dynamic
variables, where as implied by (3), their variability is triggered
by a change in the admittance matrix Y ′∠θ ′ caused by occur-
rence of a fault. Eis in (3) are held constant at their prefault
equilibrium values.

B. Fault Models and Our Notions of Resilience Measures

Power systems are subject to various faults/attacks that ulti-
mately affect the generation, the transformers, the loads and
the admittance matrix (that may also correspond to islanding).
Even the cyber faults/attacks ultimately cause malfunction of
the physical components, namely, generators, loads, trans-
formers, and lines/buses, which is what we capture. Once
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a fault occurs in any component, the faulty component is
disconnected from the rest of the system by action of protec-
tive relay, which we refer as fault clearance; the subsequent
restoration of the component is referred as recovery/repair
interchangeably.

For a given power system, let F be the set of faults of
interest. For a positive integer l, we use Fl to denote the set of
all faults-sequences of length l (i.e., containing l faults). Note
that l can be chosen based on the contingency level of interest
(e.g., for N − 3 contingency level, choose l = 3), and in gen-
eral, we will assess the system status following a sequence of
faults that are still “active,” i.e., the ones that have not yet been
repaired. For a fault-sequence φ ∈ Fl, we use φ(k) to denote
the length-k prefix of φ. The notation Iφ(k) is used to denote
the set of all islanded subsystems of the original system, result-
ing from the occurrence and clearance of the fault-sequence
prefix φ(k), while the initial system is denoted by I0. A sub-
system is “live” if it contains at least one generator and a load,
and the set of all such live subsystems is denoted by IL. For
each islanded subsystem r ∈ Iφ(k), we compute its six differ-
ent measures of resilience: TSM, CCT, RM, LSM, LL, and
RT. These are then normalized (to take a non-negative value
of at most 1) and averaged (across all fault-sequences using
their occurrence probabilities) to form an overall measure of
resilience level of a power system. The detailed mathematical
formalizations are presented in Sections III–IV.

III. RESILIENCE MEASURES WRT SEQUENCE OF FAULTS

In this section, we present our proposed definitions and
computation methods for the six atomic resilience measures:
TSM, CCT, RM, LSM, LL, and RT, with respect to a single
prefix of a fault-sequence. Our approach to aggregate those
over a fault-sequence and finally, computing their normal-
ized and averaged values over the set of all possible (active)
fault-sequences of a given length, is presented in Section IV.

A. Transient Stability Margin

For a power system with dynamics defined by (4) and (5),
the state vector consists of the N−1 relative angles (excluding
that of the reference generator with zero relative angle) and the
N absolute speeds of the generators, denoted as x ∈ R

2N−1,
and its nonlinear dynamics may be viewed as a state equation

ẋ = f (x) (6)

where f : R
2N−1 → R

2N−1 is a locally Lipschitz nonlinear
map defined over a domain D ⊆ R

2N−1. x0 ∈ R
2N−1 is an

equilibrium point if there is no rate of change at that state,
i.e., if f (x0) = 0.

Definition 1 [39]: For an autonomous system defined by (6),
its RoS corresponding to its equilibrium x0 is the largest set
� ⊆ D containing x0, such that if the system starts at any state
in �, it eventually reaches x0 and remains there. An equilib-
rium state, whose corresponding RoS has nonempty interior,
is called a stable equilibrium point (SEP).

When a stable power system is perturbed due to occur-
rence of a fault (resp., a transient disturbance), the operating
point after clearance of the fault (resp., withdrawal of the

cause of disturbance), must lie within the RoS correspond-
ing to the post-clearance (resp., post-withdrawal) SEP, for the
post-clearance (resp., post-withdrawal) system to eventually
reach the SEP. Hence the TSM of a power system, against
occurrence of a fault (resp., a disturbance), can be directly
measured by the size of the RoS corresponding to the SEP of
the post-clearance (resp., post-withdrawal) system.

The RoS of a system can be expressed as a sublevel set
{x : V(x) ≤ c} of a Lyapunov function V(x) for a level value
c ∈ R+. For a given c, V(x) can be found as the solution of
the following optimization problem [13], [40]:

maximize
V∈Px,+

γ

subject to:{
x ∈ R

2N−2|V(x) ≤ c, V̇(x) ≥ 0, x 	= 0
}

= ∅

{
x ∈ R

2N−2|p+(x) ≤ γ,V(x) ≥ c
}

= ∅ (7)

where γ is a scalar, Px,+ denotes the space of all polynomi-
als defined over indeterminate x with real coefficients, which
are evaluated positive for all x except the origin where those
are zero, and p+(x) ∈ Px,+ is a user-defined polynomial
that sets a lower bound for the desired sublevel set. Note
V̇(x) = (dV/dx)(dx/dt) = (dV/dx)f (x), and so the solution
does depend on the system dynamics f (·).

If the emptiness constraints in (7) are made of polynomial
functions, those can be formulated as a semi-definite program
involving SoS polynomials, applying the Positivstellensatz the-
orem [41]. Although the power system dynamics involves
trigonometric functions, it turns out that those can be trans-
formed into polynomials through a change of variables from
x to z ∈ R

3N−2 as follows [14]. For each i ∈ {1, . . . ,N − 1},
we define a triplet of variables

z3i−2 = sin δ′i,N, z3i−1 = ωi, z3i = 1 − cos δ′i,N (8)

and z3N−2 = ωN is added to those. Following the change of
variables since the constraints in (7) involve only polynomial
functions, one can obtain the following SoS version of (7)
using Positivstellensatz theorem [11], [41] (see Appendixes A
and B of the extended version of this article [42] for more
details and a numerical example):

maximize
V∈Pz,+,v1,v2∈PN−1

z ,s1,s2,s3∈Sz

γ

subject to:

− s1(z)(c − V(z))− s2(z)V̇(z)− vT
1 (z)g(z)− q+(z) ∈ Sz

− s3(z)(γ − p+(z))− vT
2 (z)g(z)− (V(z)− c) ∈ Sz (9)

where q+(z) ∈ Pz,+ is user selected, Pz denotes the space
of all polynomials defined over indeterminate z with real
coefficients, P

N−1
z denotes the N − 1 dimensional real vec-

tor with each of its elements in Pz, and Sz ⊆ Pz denotes the
space of all SoS polynomials defined over z.

Due to presence of the product of polynomial variables
in the first two terms of the last constraint, the optimization
problem in (9) is nonconvex, in general. An iterative algorithm
to find a local optimal solution of (9) is provided in [13] with
its proof of convergence; our recent work in [40] provides
further computational enhancement.
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If the search for Lyapunov function V(z) is restricted to
the set of degree-2 polynomials in the space Pz,+ ∩ Sz, the
computed RoS V(z) ≤ c defines an ellipsoid E expressed as
follows:

E :=
{

z ∈ R
3N−2|zTAz + 2bTz ≤ c

}
(10)

where A ∈ R
(3N−2)×(3N−2) is symmetric positive semidefinite,

b ∈ R
3N−2, and both A and b are obtained from the coefficients

of the already computed V(z). Here, we present our formula-
tion of computing the volume of an ellipsoid defined by (10),
by parametrizing it as the image of the unit Euclidean ball
under an affine transformation, as follows:

E = {Bz + d|‖z‖2 ≤ 1} (11)

where B ∈ R
(3N−2)×(3N−2) is symmetric positive semidefinite

and d ∈ R
3N−2. One can obtain the parameters B and d of (11)

by solving the following convex problem, in which κ is a
scalar [15]:

minimize
B,d,κ

log det
(

B−1
)

subject to:⎡

⎣
−κ + c + bTA−1b 0

(
d + A−1b

)T

0 κ B
d + A−1b B A−1

⎤

⎦ � 0. (12)

Equation (12) is a semidefinite program that can be solved
efficiently (complexity is polynomial wrt N) by interior-point
method.

Note the transformation of E from (10) to (11), can be
viewed as one of the computation of a maximal volume ellip-
soid inscribed in an (intersection of multiple) ellipsoid(s) [15].
The volume of E denoted by V is computed by

V = det(B)× Vu (13)

where Vu denotes the volume of the unit Euclidean ball in
R

3N−2, and det(B) denotes the determinant of B. There exists
a closed form expression for Vu in literature, but since Vu

is just a constant for the state spaces of identical dimension,
it suffices to consider det(B) for comparing two systems of
identical state-space dimension.

Definition 2: The TSM of a subsystem r ∈ Iφ(k), following
the occurrence and clearance of the length-k fault-sequence
φ(k) ∈ Fk is defined as follows:

TSMφ(k),r := (Vφ(k),r
)1/3N−2 (14)

where Vφ(k),r denotes the volume of the estimated RoS
corresponding to the SEP of the subsystem r ∈ Iφ(k).

Note when an islanded subsystem has no generator or no
load, there is zero stability-margin, i.e., Vφ(k),r = 0 whenever
r /∈ IL. On the other hand, when an island contains load and
only a single generator, its classical model becomes linear with
the whole state space being its RoS, i.e., Vφ(k),r = ∞.

B. Critical Clearance Time

The CCT represents the maximum time window, within
which a fault must be cleared after its occurrence in order
to ensure stability of the post-clearance system. After a fault

occurs at time t0 in a power system operating at a SEP, say x0,
the system dynamics changes due to the change in the transfer
admittance. If the fault is cleared by removing the faulty com-
ponent at time tc, the system dynamics changes again with an
associated RoS, say �. Then by Definition 1, the stability of
the post-clearance system is eventually restored if and only if
the operating point x(tc) ∈ �. Hence, the CCT of a fault can
be defined as the time elapsed from occurrence of the fault,
until the post-fault system trajectory reaches the boundary of
�. It also follows that if the fault clearance time tc−t0 is more
than the CCT, the post-clearance system can never eventually
reach the desired post-clearance equilibrium. For a subsystem
r formed after clearance of a fault f ∈ F, we can obtain a
conservative estimate of its CCT, as the crossing time of the
boundary of the inner approximation of post-clearance RoS
[obtained solving (9)] as follows:

CCTf ,r := argmaxt{V(x(t))|V(x(t)) ≤ c, x(t0) = x0} (15)

where x(t) evolves in time following the post-fault dynamics.
Since a generator outage does not leave any faulty com-

ponent in the system, the corresponding CCT is ∞, i.e.,
CCTf ,r = ∞ when f is outage of a generator. In case of
a line (resp. transformer) fault, the post-fault system tra-
jectory depends on the exact location of the fault on the
line (resp. transformer). So a worst-case fault location with
smallest possible CCT is identified through a discretized
search over the possible fault locations along the line (resp.
transformer).

Definition 3: For a subsystem r ∈ Iφ(k) resulting from the
length-k fault-sequence φ(k) ∈ Fk, its resilience measure CCT
is defined as follows:

CCTφ(k),r := CCTf ,r (16)

where f ∈ F is the last fault in the fault-sequence φ(k) ∈ Fk.

C. Relay Margin

Each component of a power system is equipped with des-
ignated protective relay(s) meant to monitor and respond to
a possible fault in that component. Every relay has a prede-
termined operating zone, and when the value of the variable
monitored by the relay enters into its operating zone, and
remains inside the zone for a predetermined time, the relay
sends a “tripping” signal for clearance of the component. Such
clearance of a faulty component causes change in the over-
all system dynamics that leads to transient swings across the
system. Such transient swings of the variables can cause the
nondesignated relays to trip, even though their corresponding
protected components are healthy, which is referred as false-
tripping. False-tripping of a relay results in an undue outage in
a system, thus (possibly) degrading the quality-of-performance
in terms of undesired loss of generation and/or load. We
measure the degree of robustness to such false-tripping by
the RM [25].

A relay protecting a line, diagnoses a fault in the line by
checking if the impedance seen (i.e., the instantaneous ratio
of voltage and current phasors) remains inside its operat-
ing circle (the “Mho” circle) for a specified duration. The
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Fig. 1. Impedance trajectory seen by Line 7-6 distance relay placed near
Bus 7, after clearance of fault in Line 7-4 at 60 ms (for PS1).

Fig. 2. Impedance magnitude and phase seen by Line 7-6 distance relay
placed near Bus 7, after clearance of fault in Line 7-4 at 60 ms (for PS1).

minimum distance between the post-clearance impedance tra-
jectory to the relay operating circle is defined as its RM.
While there exist multiple operating circles (typically zone
1, 2, and 3) for a relay, we measure RM with respect to
the largest one (i.e., zone 3) to account for the maximum
possible number of false-interventions. Note since the relays
used for protecting the buses and transformers are of dif-
ferential nature, the effect of transient swing is cancelled
in the differential variable monitored by them. Hence, these
relays are not vulnerable to post-clearance transient swing
(i.e., RM = ∞).

For illustration, consider a fault in Line 7-4 of the system
PS1 of Fig. 4(a), which gets cleared in 60 ms. Fig. 1 shows
the post-clearance impedance trajectory seen by the distance
relay installed for Line 7-6 near Bus 7, where the RM is also
depicted. Fig. 2 shows the trajectories of the post-clearance
magnitude and phase of the impedance seen by that relay.
Since the trajectories are damped periodic, the minimum
distance of the post-clearance transient swing to the relay oper-
ating circle is realized inside the first cycle, denoted by T as
shown in Fig. 2.

Let Zf ,i[0,T] denote the trajectory of impedance over the
interval [0,T] seen by the distance relay i (installed near one
of the adjacent buses of a nonfaulty line), following clear-
ance of the fault f ∈ F. Accordingly, RM corresponding to
the fault f ∈ F for that distance relay can be computed as
follows:

RMf ,i = minimize
x:‖x−c‖2≤r,y∈Zf ,i[0,T]

‖x − y‖2 (17)

where c and r are two scalars denoting the center and radius
of the outermost relay operating circle, respectively. T can be
numerically computed as the time elapsed after fault-clearance,
until the second inflection along the impedance trajectory is
encountered. Then (17) can be solved by solving a set of

Fig. 3. Steady state variation of Bus 5 voltage of PS1 with increase in load
from nominal value (λ = 1).

QCQP, formed by fixing y at the respective discrete samples
from Zf ,i[0,T], and picking the minimum of the solution set.

Definition 4: For a subsystem r ∈ Iφ(k) containing a set of
distance relays denoted D, resulting from the length-k fault-
sequence φ(k) ∈ Fk, its resilience measure RM is defined as
follows:

RMφ(k),r := min
i∈D

RMf ,i (18)

where f ∈ F is the last fault in the fault-sequence φ(k) ∈ Fk.

D. Load Loss and Load Security Margin

In [6], we considered LL (denoted as LoPr in [6]) as a
resilience measure, but the concept of LL was limited only
to the loss of load due to disconnection caused by fault-
clearance(s), which is named consequential LL [4], in practice.
In a practical power system, however, LL can also take place
if any of the security limits is violated, even though there is
no disconnection. The power system security limits are usu-
ally determined based on the admissible steady state ranges
of the power flow variables: 1) magnitude of bus voltages;
2) loading of the respective lines and transformers; and 3) gen-
erated active and reactive powers. We refer to these algebraic
variables as the security variables.

Loads can slowly vary throughout the operation of a power
system. Such variation of load causes the SEP to drift from
its nominal value. A typical variation of the equilibrium value
of the voltage of Bus 5 of the system PS1 of Fig. 4(a) due
to increase of the loads from its nominal unit value, is shown
in Fig. 3 (note similar curves can also be drawn for any of
the other security variables). The nose-point (also called the
bifurcation point) of the curve in Fig. 3, corresponds to the
maximum load (denoted λnp in Fig. 3) for which a solution
of the power flow equations (1) exists. There exists a smaller
upper limit to load (denoted λcr in Fig. 3) referred as the “crit-
ical load,” beyond which one or more of the security variables
violate their limit. In general, the critical load is smaller than
the noise-point load, and it is the critical load that we use to
determine the LSM.

After clearing a fault, it is important that the post-clearance
load remains below the critical limit, so that the steady state
values of the security variables lie within their respective lim-
its. We call the margin to the critical load with respect to the
nominal load, the LSM. For example in Fig. 3, the system must
be operated at load below its critical value of approximately
1.26 times the nominal load, to restrict the bus voltage in its
security interval [0.95, 1.05] pu. So the LSM in this case, is no
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more than 0.26 times the nominal load. Note a power system is
aided with various controls to ensure secure operation, such as
switched capacitors, LTC operation, SVC, synchronous con-
denser, generator field voltage adjustment, etc., and the LSM is
computed under the best-case control scenario. Also note that
when the LSM is negative, one must accept load shutdowns,
incurring certain LL.

For computation of both LL and LSM, we adopt the well-
known method of CPF [28] that provides a systematic way to
compute the steady state effects of load variation on the power
flow variables. In CPF, the variation of load (and the associ-
ated adjustment of generation), are parametrized by λ ∈ R≥0,
where λ = 1 corresponds to the nominal load and generation.
For this setting, the power flow equations (1) are written as

λPGi0 =
M∑

j=1

ViVjYij cos
(
θij − δi + δj

) + λPLi0 (19)

QGi =
M∑

j=1

ViVjYij sin
(
θij − δi + δj

) + λQLi0 (20)

where PGi0, PLi0, and QLi0 denote the nominal values of PGi,
PLi, and QLi, respectively. Note (19) and (20) utilize an even-
participation of all the generators and loads. The extension to
a more general case is straightforward.

Let Lφ(k),r be the active power consumed by the loads origi-
nally connected to the subsystem r ∈ Iφ(k). The notation λφ(k),r
is introduced to denote the critical load (i.e., minimum value
of λ for which one or more of the security variables violate
their limit) of the subsystem r ∈ Iφ(k). Note when λφ(k),r > 1,
there is positive LSM, but when λφ(k),r < 1, some LL must be
incurred. Using the critical load parameter λφ(k),r, we define
the two resilience measures LL and LSM.

Definition 5: The LL incurred within the subsystem r ∈ Iφ(k)
is given by

LLφ(k),r := −Lφ(k),r × min
(
0, λφ(k),r − 1

)
(21)

whereas, its LSM is given by

LSMφ(k),r := Lφ(k),r × max
(
0, λφ(k),r − 1

)
(22)

where as noted above λφ(k),r is the critical load for the sub-
system r ∈ Iφ(k), and Lφ(k),r is the active power of the loads
originally connected to the subsystem r ∈ Iφ(k).

Note both LSM and LL are defined in terms of only the
active powers since the reactive powers essentially add to
system’s internal losses that are harder to measure in practice.

E. Recovery Time

The RT also serves as another resilience measure. It is
the time an operator is expected to take to restore the
system to its prefault normalcy. Aside from the fault-sequence,
the RT depends on other factors, such as geographic loca-
tion, availability of crew, supporting infrastructure readiness,
weather condition, etc., [43]–[45]. Chow et al. [43] analyzed
the statistical significance of various factors that affect the
RT. Rodriguez and Vargas [44] proposed a fuzzy-logic-based
technique to estimate RT, where the relative significance of

different factors is set by the user. Jaech et al. [45] stud-
ied the estimation of RT distribution, a gamma distribution
with parameters dependent on the aforementioned factors, by
employing a multilayer neural net for training against the his-
torical records. Such techniques involving historical data and
statistical estimation may be used to forecast the time needed
to recover from the faults.

For any fault f ∈ F, let f̄ denote its recovery action and
F̄ denotes the set of all such recovery actions. Also let A :=
F ∪ F̄ denote the set of all fault and recovery actions, and

 ⊆ (A×R+)l denote the set of all “feasible” timed-sequences
of a total of l faults and recovery actions, where each element
of a timed-sequence consists of a fault/recovery action tagged
with its occurrence/completion time, formally defined as


 :=
{
ψ =

((
aψ1 , tψ1

)
, . . . ,

(
aψl , tψl

))
∈ (A × R+)l|

∀k ≤ l : tψk > tψk−1

aψk = f̄ ⇒ #(f , ψ(k)) ≥ #
(
f̄ , ψ(k)

)}
(23)

where ψ(k) denotes the length-k prefix of fault-repair sequence
ψ ∈ 
, and #(f , ψ(k)) (resp. #(f̄ , ψ(k))) denotes the total
number of faults (resp. recoveries) in the sequence ψ(k). The
condition #(f , ψ(k)) ≥ #(f̄ , ψ(k)) simply captures the fact that
for a repair action to occur, a corresponding fault must occur
first.

For a sequence of first k faults φ(k) ∈ Fk (with the
corresponding sequence of recovery actions φ̄(k)) in the timed-
sequence ψ , its RT is obtained as the difference between the
latest repair action in φ̄(k) versus the earliest fault action
in φ(k)

RTψ,φ(k) := max
i∈{1,...,k}

{
tψi |aψi ∈ φ̄(k)

}

− min
j∈{1,...,k}

{
tψj |aψj ∈ φ(k)

}
. (24)

The average RT for a length-k fault-sequence φ(k) ∈ Fk is
then given by

RTφ(k) =
∑

ψ∈
φ(k)
pψ.RTψ,φ(k) (25)

where 
φ(k) ⊆ 
 is the set of all timed-sequences containing
φ(k) fault-sequence prefix, and pψ ∈ [0, 1] denotes the proba-
bility of ψ ∈ 
φ(k). Note the recovery is a property of only the
active fault-sequence and all the islanded subsystems formed
by it, i.e., it does not depend on any individual subsystem,
and hence it is not subscripted by the index of a subsystem,
unlike the other resilience measures introduced earlier in this
section.

IV. RESILIENCE INDICES: NORMALIZED AND AVERAGED

WRT ALL FAULT-SEQUENCES

In last section, we introduced the six resilience mea-
sures TSMφ(k),r, CCTφ(k),r, RMφ(k),r, LSMφ(k),r, LLφ(k),r,
and RTφ(k), where φ(k) is the length-k prefix of an active
fault-sequence φ ∈ Fl, and r ∈ Iφ(k) is an islanded subsys-
tem resulting from the occurrence of the fault-sequence φ(k).
Next, we define their respective aggregated values following
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an entire fault-sequence φ ∈ Fl. This is done by choosing the
minimum value (for TSM, CCT, and RM) across all resulting
islands of all the prefix fault-sequences: r ∈ Iφ(k)∀k ≤ l, or by
choosing the value of the total (for LSM, LL, and RT) across
all resulting islands r ∈ Iφ(l), upon the entire fault-sequence.

Definition 6: The aggregate resilience measures TSMφ ,
CCTφ , RMφ , LSMφ , LLφ , and RTφ following a fault-sequence
φ ∈ Fl, are defined as:

TSMφ := min
k≤l,r∈Iφ(k)

TSMφ(k),r

CCTφ := min
k≤l,r∈Iφ(k)

CCTφ(k),r

RMφ := min
k≤l,r∈Iφ(k)

RMφ(k),r

LSMφ :=
∑

r∈Iφ(l)

LSMφ(l),r

LLφ :=
∑

r∈Iφ(l)

LLφ(l),r

RTφ := RTφ(l). (26)

The six aggregated measures introduced in Definition 6 pos-
sess their own units, and to be able to compare them against
each other, we propose a normalization of each resilience
measure against the range of its computed values to obtain
a normalized value in the interval [0,1], where 1 (resp., 0)
means a 100% (resp., 0%) level for that measure. In doing the
normalization, a type of scaling, it is practical to have a higher
resolution at the lower values of a measure than at its higher
values (a type of diminishing returns), and accordingly a non-
linear normalization is more practical. In fact, any concave
monotonic increasing nonlinear mapping that maps the range
of values taken by a resilience measure to the unit interval,
can be used for normalization. Since the different resilience
measures range over different supports, it is also desirable
that the normalization be invariant with respect to scaling of
the support (whenever it is finite). We adopt the following
normalization possessing the aforementioned properties.

Definition 7: Given any resilience measure V with its com-
puted values in the range [Vmin,Vmax], the normalized value
of V ∈ [Vmin,Vmax] denoted nV ∈ [0, 1], is defined by the
function

nV :=
{

1 − e−α(V−Vmin), Vmax = ∞
1 − e−[ α

Vmax−V ](V−Vmin), Vmax < ∞ (27)

where α > 0 is a user-selected parameter. Normalization of
each of the six resilience measures of Definition 6, obtained
using the formula (27), yields the corresponding normal-
ized resilience measures, denoted by nTSMφ , nCCTφ , nRMφ ,
nLSMφ , nLLφ , and nRTφ , respectively.

Note the above formula of (27) is simply an exponential
saturation from 0 to 1, over the interval [Vmin,Vmax]. If a
resilience measure has unbounded support [first case in (27)],
the rate-constant is simply the user selected parameter α.
On the other hand, if the support is finite [second case in (27)],
the rate is variable and progressively increasing causing the
saturation to occur within the finite support (akin for example
to the tangent function, which also has a variable growth rate
that is progressively increasing).

Note the second formula of (27), used for the normalization
of a resilience measure possessing a finite support, has the
desirable property that if the support [Vmin,Vmax] as well as a
value V ∈ [Vmin,Vmax] are scaled identically, the normalized
value nV remains unaltered. In this sense, the normalization is
scale-invariant. To see this, define fV as the fractional value
of V ∈ [Vmin,Vmax] relative to its support as the ratio of its
distance to Vmin to the distance of Vmax to Vmin

fV := V − Vmin

Vmax − Vmin
. (28)

Then the second case in (27) can be rewritten as

nV := 1 − e−α fV
1−fV (29)

which indicates that the normalization value remains the same
if the fractional value does not change. The latter is the case
if there is an identical scaling of V relative to Vmin (i.e., of
V − Vmin) as well as the support [Vmin,Vmax], and the scaling
factor in the numerator and the denominator of (28) cancel
each other, preserving the value of fV .

Definition 7 formalizes the 6 aggregate resilience measures
for each given fault-sequence φ ∈ Fl. Next, we propose to
compute their averages across all possible fault-sequences of
a desired length, against their occurrence probabilities, in order
to obtain the set of 6 overall resilience indices of a given power
system (note the fault-sequence length will be chosen as l if
interested in evaluating resilience of a given power system
against N − l level contingencies). The occurrence-probability
of a fault-sequence is simply the product of the occurrence
probabilities of the individual faults in the sequence, and those
can be obtained from the historical records. For f ∈ F, let-
ting pf ∈ [0, 1] denote its occurrence probability such that∑

f ∈F pf = 1, we can compute the occurrence probability
pφ of each active fault-sequence φ ∈ Fl as

∏
1≤k≤l pf (k),

where pf (k) denotes the occurrence probability of the kth fault
f (k) ∈ F of the fault-sequence φ. Averaging each of the 6
normalized resilience measures with respect to the occurrence
probabilities of the fault-sequences, yields an overall resilience
measure, a set of 6 indices for a power system as summarized
as follows.

Definition 8: The overall resilience measure Rl ∈ [0, 1]6 of a
given power system with respect to all possible fault-sequences
of a certain length l > 0 is given by

Rl :=
∑

φ∈Fl

pφ
[
nTSMφ nCCTφ nRMφ nLSMφ

(1 − nLLφ) (1 − nRTφ)
]T (30)

where pφ := ∏
1≤k≤l pf (k) denotes the probability of the fault-

sequence φ ∈ Fl, in which the notation f (k) ∈ F denotes the
kth fault in the fault-sequence φ ∈ Fl.

Unlike TSM, CCT, RM, and LSM, the resilience measures
LL and RT are inversely correlated with the level of resilience
(i.e., a higher resilience corresponds to a lower LL or a lower
RT). Hence, to define the overall resilience measure in (30),
the “complements” (1−nLLφ) and (1−nRTφ) of the normal-
ized LL and RT values are used, measuring the normalized
levels of load served and system uptime, respectively. To a
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system designer or evaluator, such six-dimensional measure
Rl ∈ [0, 1]6 forms a basis to compare the resilience of dif-
ferent designs. To compare/evaluate a number of designs, a
designer may require certain minimum acceptable levels for
each of the 6 indices, and among the designs that are accept-
able, they may rank highest the one with the largest ||Rl||1 or
||Rl||2 value, or top-most value per a lexicographical ordering
based on their relative preference of the 6 measures.

A. Deriving Time Integral of Load Served

Here, we show that a recently reported measure of
resilience, namely, TILS over a finite time-window [9], can
be derived from our proposed set of 6 measures. For a fault-
recovery timed-sequence ψ = ((a1, t1), . . . , (al, tl)) ∈ 
, its
TILS can be derived as

TILSψ = tl · L0 −
l−1∑

i=1

⎛

⎝
∑

r∈Iφ(i)

LLφ(i),r

⎞

⎠ × (ti+1 − ti) (31)

where L0 is the load connected to the initial system, and φ(i)
denotes the sequence of active faults in ψ at time ti (i.e., faults
that are yet to recover by time ti). The overall TILS against
the set of all length-l fault-sequences in Fl is then given by
the probabilistic average

TILSl =
∑

ψ∈

pψTILSψ. (32)

The TILS of (31) is similar to that proposed as a resilience
metric in [9] and used in [10]. Our proposed set of indices
in (30) provides a more comprehensive measure of resilience.

V. IMPLEMENTATION AND TEST SYSTEM RESULTS

The overall framework of computing the composite
resilience indices is implemented in MATLAB, where we
used: SPOT [46] for inner approximation of the RoS,
CVX [47] to compute the volume of the approximate RoS and
the RM, PSAT [48] with necessary extension to compute the
LSM and the LL and a self-developed module for solving the
power-flow and the time domain simulation. MOSEK [49],
a commercial optimization tool, was used as the backend
optimizer for both SPOT and CVX.

A. Resilience Comparison for 3 Illustrative Power Systems

In order to demonstrate the effectiveness of the proposed
approach, we apply it on three similar 3-machine-7-bus
systems, and compute and compare their resilience levels
against all fault-sequences of length 2. All three systems have
the same set of generators, loads, transformers, and lines; they
only differ in the location of the generators. Yet it turns out that
the three systems have different levels of resilience over the
set of all possible fault-sequences. The three systems, referred
as PS1, PS2, and PS3, are shown in Fig. 4(a)–(c), respectively.
The corresponding system data can be found in Appendix C
of the extended version of this article [42].

For comparing the resilience levels of the three chosen
systems PS1, PS2, and PS3, we assumed that their RTs are
identical (since their system topologies and components are

Fig. 4. Single line diagrams of illustrative 7-bus systems. (a) PS1. (b) PS2.
(c) PS3.

the same), and hence, the RT is not a factor in computing their
overall composite resilience measures. Among the considered
faults: 1) line fault; 2) transformer fault; 3) bus fault; and
4) generator outage, the first three are modeled by the appli-
cation of symmetric three phase fault at one of the system
components of the respective type. The total number of the
faults of interest for each system equals the total number of
components, namely, 18. The sequencing of two of these faults
leads to a total of 194 length-2 “feasible” fault-sequences that
we analysed for each of the three systems. First, the set of
all live subsystems IL is obtained by applying and clearing
all length-2 fault-sequences and their prefixes. PS1 was found
to have a total of 224 possible live subsystems, while that
number for each of PS2 and PS3 was found to be 216.

The fault-clearance time was chosen to be 60 ms [27] (i.e.,
approximately 4 cycles for a 60 Hz system). A bus fault
was cleared by isolating the bus from the system, disconnect-
ing all the lines, generators, and transformers connected to
the faulty bus. A line or a transformer fault was cleared by
opening the adjacent breakers and thus, removing the faulty
component. The other computation parameters were set as:
p = [0.75, 0.1, 0.05, 0.1]T and α = 1. Here, p is a 4-D fault
probability vector (element-wise for line, transformer, bus, and
generator faults, respectively).

Fig. 5(a)–(e) shows the computed normalized values of the
respective resilience measures TSM, CCT, RM, LSM, and LL
for the three systems in 1-D vertical scatter plots (each scatter
plot has 194 circles indicating the values corresponding to
the 194 length-2 fault-sequences, respectively). The stars on
the scatter plots correspond to the probabilistically averaged
values of the resilience measures of the respective systems.

Table I lists the averaged resilience measures R2 for the
three systems, along with their 1- and 2-norms: ||R2||1 and
||R2||2. The complete set of results tabulating all the 194×3 =
582 length-2 fault-sequences is presented in Appendixes D–F
of the extended version of this article [42]. PS2 evaluates to
be the least resilient system topology among the three since
it is the lowest in majority of the five indices of R2. Based
on the ||R2||1 or ||R2||2 values, PS3 is found to be the most
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Fig. 5. 1-D scatter plots of the normalized resilience measures. (a) TSM.
(b) CCT. (c) RM. (d) LSM. (e) LL and the “unnormalized” index. (f) TILSψ
for the three systems PS1, PS2, and PS3 against all length-2 fault-sequences.
The stars correspond to the probabilistically weighted-averaged values of the
resilience measures.

resilient among the three. This ranking is appropriate when all
the five measures are equally important to the operator. On the
other hand, if the amount of load served is of higher priority
as compared to the stability or RM, then the operator may
choose PS1 over PS3 based on the computed R2.

For computing TILS for our test example of three systems,
we treat the interval ti+1 − ti ∀i ∈ {1, . . . , l − 1} to be con-
stant, say τ , which implies a constant RT for each fault,
consistent with the earlier assumption in this section. For

TABLE I
COMPARISON OF RESILIENCE MEASURES

tl = 1.5 unit, τ = 0.5 unit, and L0 and LLφ(i),r measured
in p.u., Fig. 5(f) shows the computed values of TILSψ for the
three systems PS1, PS2, and PS3 in a vertical scatter plot,
where their corresponding probabilistically averaged values
TILS2, marked as stars, are 4.25, 3.92, and 4.07, respec-
tively. With respect to their TILS measures, the systems can
be ranked as: PS1 > PS3 > PS2. This order is different
from the one obtained using an aggregate of all 6 proposed
measures as captured in the norms ||R2||1 or ||R2||2, namely,
PS3 > PS1 > PS2. In other words, using only the TILS-based
resilience measure that depends only on the LL and RT, can
in general be limiting, when compared to the proposed full set
of 6 indices.

B. Implementation on IEEE 30-Bus Test System

To further validate the applicability of our proposed frame-
work, we implemented it on the IEEE 30-bus test system [50]
that is widely employed in various applications; some recent
examples include: [51]–[55]. It models a portion of the
American Electric Power System in the midwestern U.S,
which includes 6 synchronous generators, 4 transformers, 29
buses, and 34 lines, and can witness a total of 73 different
faults. Fig. 6 shows the single-line diagram of the model.
Note in the single-line diagram, the three transformers 6-9,
9-10, and 9-11 together represent a single 3-winding trans-
former, and similarly, the transformers 4-12 and 12-13 together
represent another 3-winding transformer (see [50] for more
details).

The system’s security limits pertaining to line-currents and
bus-voltages were obtained from [56]. Table II shows the
parameters related to the six generators, such as their MVA rat-
ings, base-case dispatch schedule, reactive power upper/lower
limits (taken from [56]), transient direct-axis reactance (i.e.,
the imaginary part of zi in (2), denoted by xd,i hereinafter)
and the parameters Mi and Di of the classical dynamic model.
Table II shows the per unit (p.u.) values for the respective
generators converted to a common system base of 100 MVA.
The machine-base values of xd,i = 0.25 p.u., Mi = 8.68 s.
(both taken from the default values of round-rotor generator
model available in PSS/E [57]), and Di = 3 (taken from [58])
are identical for all six generators.

By virtue of the six generators (i.e., N = 6) present in
the model, the model of (6) has 11 state variables, and upon
the polynomialization as in (8), it contains 16 state variables.
The estimated RoS of the base-case system (prior to occur-
rence of any faults) using the proposed SoS-based method,
projected on to the 2-D spaces of every pairs of the relative
angles, is shown in Fig. 7. The steady state variation of a few
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Fig. 6. Single-line diagram of the IEEE 30-bus test system.

TABLE II
GENERATOR DATA USED IN IEEE 30-BUS SYSTEM

Fig. 7. Estimated RoS of IEEE 30-bus test system with the origin set as
the equilibrium, projected on the 2-D space of all pairs of relative generator
angles.

representative load-bus voltages with increase in the loads and
the generations from their nominal values is shown in Fig. 8.

Following the method proposed in Sections III–IV, we
compute the resilience measures TSM, CCT, RM, LSM,

Fig. 8. Steady state variation of voltages at representative load-buses 25,
27, and 30 of IEEE 30-bus test system, with increase in load from nominal
value.

Fig. 9. 1-D scatter plots of the normalized resilience measures: TSM, CCT,
RM, LSM, and LL for the IEEE 30-bus system against all 73 length-1 faults.
The stars correspond to the probabilistically weighted-averaged values.

and LL and their normalized values for all 73 faults. The
fault properties and resilience computation related parame-
ters are considered same as those used for the illustrative
7-bus systems. To allow for reconfiguration/resourcefulness,
prior to computing LSM and LL for each fault scenario, we
allowed adjustment of generation schedule and/or switching
of the shunt capacitors at buses 10 and 24. The 1-D ver-
tical scatter plots in Fig. 9 show the computed normalized
values of the respective resilience measures TSM, CCT, RM,
LSM, and LL (in red, green, blue, magenta, and cyan col-
ors, respectively), where the circles indicate their values under
different faults, and the stars indicate the corresponding prob-
abilistic averages. A detailed table including the values of the
resilience indices is provided in Appendix G of the extended
version [42].

C. Comments on Computational Complexity and Scalability

The most computationally complex part of our proposed
method is the inner approximation of the RoS, which involves
solving the SoS feasibility problems. This being polyno-
mial in the number of generators in the system, has also
become scalable. On our 64 bit computer with 16 GB RAM
and 2.6 GHz processor, the computation of the proposed
resilience indices for each fault-sequence took about 10 s on
average for the illustrative systems, while that time for the
IEEE 30-bus system was 25 min. The typical industry prac-
tice of time-domain simulation is itself limited to a single
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sequence of faults, and it must be repeated while simulat-
ing other fault-sequences. Our approach, being polynomial
per fault-sequence, remains comparable, yet it quantifies the
resilience levels that a time-domain simulation by itself can-
not do. It also helps to note that in evaluating alternative
designs for N-1 or N-2 or N-3 levels of resilience, only
a polynomial number of fault-sequences is required to be
analyzed (i.e., of the order of #faults3), making the com-
putation practical. Also, since such computations for each
fault-sequence and the resulting subsystem(s) can be exe-
cuted in parallel, the proposed composite resilience metric
can be parallelized, making it computationally scalable and
attractive.

VI. CONCLUSION

A resilience measure of a dynamical cyberphysical system
(CPS), such as a power system, must capture its ability to
offer performance stably against the ensuing faults/attacks.
Accordingly, we proposed a novel composite resilience mea-
sure that quantifies stability-level against faults in forms of
TSM, CCT, RM, and LSM, and the performance-level in
forms of LL and RT. To the best of our knowledge, this is
the first such comprehensive quantification of resilience for a
power system, one that also applies to any dynamical CPS
(by replacing RM and LSM with appropriate safety margins,
and LL with suitable quality-of-service loss). The 6 proposed
measures are computed for each prefix of a fault-sequence
and for each resulting subsystem, and are aggregated (through
minimization or summation) to find the respective measures
for the fault-sequence. After being computed for all individ-
ual fault-sequences, these measures are normalized and finally
averaged against the occurrence probabilities of the fault-
sequences to obtain the overall resilience measure, a composite
of 6 unit-interval resilience indices. These indices provide a
useful basis to decide the need of strengthening the system’s
configurations to enhance its level of resilience. The proposed
set of measures are much more comprehensive compared to
other existing ones, e.g., the resilience metric of TILS, which
can be derived using just two of the six proposed measures,
namely, LL and RT.

For computing the size of the RoS, we proposed a novel
approach that builds on the existing SoS optimization based
technique yielding a polynomial complexity computation (in
the number of generators), and further used it to also esti-
mate the CCT. We also proposed a new quadratic optimization
approach to compute the RM. Finally, we introduced the
security and stability constrained notions of LSM and LL
and implemented the CPF method for their computation. The
proposed computation scheme is of polynomial complexity
in the number of generators, and is further amenable to par-
allel computing, making it scalable. For the first time, the
SoS optimization-based RoS estimation was conducted for a
practical test system, so as to analyze transient stability as
well as CCT under various fault-sequences and post-clearance
reconfigurations.

The proposed composite resilience measure is helpful in
expressing the relative resilience of different power systems,

under sequence of faults. This can be a useful tool in the
planning phase, for example, to select the most desirable
system topology among multiple viable ones. Also, for any
fault-sequence, a smaller resilience measure would signify a
higher severity, and thus, the approach also provides a basis
for screening the fault-sequences for further detailed analysis
according to their severity in terms of both loss of stability
and performance levels.
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